A linked list is called so because each of items in the list is a part of a structure, which is linked to the structure containing the next item. This type of list is called a linked list since it can be considered as a list whose order is given by links from one item to the next.
A singly linked list is a linked list in which each node contains only one link field pointing the next node in the list.
The advantage of using Circular Linked List is the last null pointer is replaced and the pointer field of the last node points to the first node, due to this circular arrangement the traversing become quite easier.
A linked list can be viewed as a group of items, each of which points to the item in its neighbourhood. An item in a linked list is known as a node. A node contains a data part and one or two pointer part which contains the address of the neighbouring nodes in the list.
A more sophisticated kind of linked list is a doubly-linked list or a two-way linked list. In a doubly linked list, each node has two links: one pointing to the previous node and one pointing to the next node.
In a circularly-linked list, the first and final nodes are linked together. In another words, circularlylinked lists can be seen as having no beginning or end. To traverse a circular linked list, begin at any node and follow the list in either direction until you return to the original node.
In a singly-circularly-linked list, each node has one link, similar to an ordinary singly-linked list, except that the link of the last node points back to the first node. As in a singly-linked list, new nodes can only be efficiently inserted after a node we already have a reference to.
In a doubly-circularly-linked list, each node has two links, similar to a doubly-linked list, except that the previous link of the first node points to the last node and the next link of the last node points to the first node. As in doubly-linked lists, insertions and removals can be done at any point with access to any nearby node.
Circularly linked lists are useful to traverse an entire list starting at any point. In a linear linked list, it is required to know the head pointer to traverse the entire list. The linear linked list cannot be traversed completely with the help of an intermediate pointer.