Systems approach is widely used in problem solving in different contexts. Researchers in the field of science and technology have used it for quite some time now. Business problems can also be analyzed and solved using this approach. The following steps are required for this:
We’ll be covering the following topics in this tutorial:
Defining the Problem
This is the step when the problem has to be defined. Sometimes one may confuse the symptoms or the exhibition of a behavior to be a problem but actually it may only be a symptom of a larger malaise. It may just exhibit the behavior of a larger phenomenon. It is vital to drill deep into an issue and clearly understand the problem rather than having a superficial understanding of the problem. One must appreciate that this in the initial stage of problem solving and if the problem itself is not correctly diagnosed then the solution will obviously be wrong. Systems approach is therefore used to understand the problem in granular detail to establish requirement and objectives in-depth. By using the systems approach the problem will be analyzed in its totality with inherent elements and their interrelationships and therefore this detailed analysis will bring out the actual problem and separate out the symptom from it.
Developing Alternative Solutions
This the logical next step in the systems approaches for problem solving. In this stage alternative solutions are generated. This requires creativity and innovation. In this stage-the analyst uses creativity to come up with possible solutions to the problem. Typically in this stage only the outline of solutions are generated rather than the actual solutions.
Selecting a Solution
In this step, the solution that suits the requirement and objectives in the most comprehensive manner is selected as the ‘best’ solution. This is done after evaluating all the possible solutions and then comparing the possible set of solutions to find the most suitable solution lot of mathematical, financial and technical models is used to select the most appropriate solution.
Designing the Solution
Once the most appropriate solution is chosen, it is then made into a design document to give it the shape of an actionable solution, as in the evaluation stage, only the outline of the solution is used. At this stage the details of the solution are worked out to create the blueprint for the solution. Several design diagrams are used to prepare the design document. At this stage the requirement specifications are again compared with the solution design to double check the suitability of the solution for the problem.
Implementing the Solution
It is the next step in the process. The solution that has been designed is implemented as per the specifications -laid down in the design document. During implementation care is taken to ensure that there are no deviations from the design.
Reviewing the Solution
This is the final step in the problem solving process where the review of the impact of the solution is noted. This is a stage for finding out if the desired result has been achieved that was set out.
A Systems Approach Example
Let us assume that A is the coach of the Indian cricket team. Let us also assume that the objective that A has been entrusted with is to secure a win over the touring Australian cricket team. The coach uses a systems approach to attain this objective. He starts by gathering information about his own team.
Through systems approach he views his own Indian team as a system whose environment would include the other team in the competition, umpires, regulators, crowd and media. His system, i.e., team itself maybe conceptualized as having two subsystems, i.e., players and supporting staff for players. Each subsystem would have its own set of components/entities like the player subsystem will have openers, middle order batsmen, fast bowlers, wicket keeper, etc. The supporting staff subsystem would include bowling coach, batting coach, physiotherapist, psychologist, etc. All these entities would indeed have a bearing on the actual outcome of the game. The coach adopts a systems approach to determine the playing strategy that he will adopt to ensure that the Indian side wins. He analyses the issue in a stepwise manner as given below:
Step 1: Defining the problem-In this stage the coach tries to understand the past performance of his team and that of the other team in the competition. His objective is to defeat the competing team. He realizes that the problem he faces is that of losing the game. This is his main problem.
Step 2: Collecting data-The coach employs his supporting staff to gather data on the skills and physical condition of the players in the competing team by analyzing past performance data, viewing television footage of previous games, making psychological profiles of each player. The support staff analyses the data and comes up with the following observations:
- Both teams use an aggressive strategy during the period of power play. The competing Australian team uses the opening players to spearhead this attack. However, recently the openers have had a personal fight and are facing interpersonal problems.
- The game is being played in Mumbai and the local crowd support is estimated to be of some value amounting to around fifty runs. Also the crowd has come to watch the Indian team win. A loss here would cost the team in terms of morale.
- The umpires are neutral and are not intimidated by large crowd support but are lenient towards sledging.
Step 3: Identifying alternatives-Based on the collected data the coach generates the following alternate strategies:
- Play upon the minds of the opening players of the competitors by highlighting their personal differences using sledging alone.
- Employ defensive tactics during power play when the openers are most aggressive and not using sledging.
- Keep close in fielders who would sledge and employ the best attacking bowlers of the Indian team during the power play.
Step 4: Evaluating alternatives-After having generated different alternatives, the coach has to select only one. The first alternative may lead to loss of concentration on the part of openers and result in breakthroughs. However, there is a chance that the interpersonal differences between the two openers may have already been resolved before they come to the field and in such a case this strategy will fail. The second strategy provides a safer option in the sense that it will neutralize the aggressive game of the openers but there is limited chance of getting breakthroughs. The third option of employing aggressive close in fielders to play upon the internal personal differences of the openers and at the same time employing the best bowlers may lead to breakthroughs and may also restrict the aggressive openers.
Step 5: Selecting the best alternative-The coach selects the third alternative as it provides him with the opportunity of neutralizing the aggressive playing strategy of the openers as well as increases the chances of getting breakthrough wickets.
Step 6: Implementing and monitoring-The coach communicates his strategy to his players and support staff, instructs support staff to organize mock sessions and tactics to be employed to make the strategy a success. The players and support staff performance is monitored by the coach on a regular basis to ensure that the strategy is employed perfectly.
Simplifying a System or Applying Systems Approach For Problem Solving
The easiest way to simplify a system for better understanding is to follow a two-stage approach.
Partitioning the System into Black Boxes
This is the first stage of the simplification process, in this stage the system is partitioned into black boxes. Black boxes need limited knowledge to be constructed. To construct a black box one needs to know the input that goes into it, the output that comes out of it and its function. The knowledge of how the functionality is achieved is not required for constructing a black box. Black box partitioning helps in the comprehension of the system, as the entire system gets broken down into granular functionalities of a set of black boxes.
Organizing the Black Boxes into Hierarchies
This is the second stage of the simplification process, in this stage the black boxes constructed in the earlier phase are organized into hierarchies so that the relationships among the black boxes is easily established. Once, a hierarchy of the black boxes is established, the system becomes easier to understand as the internal working of the system becomes clearer.