• Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Skip to footer

Computer Notes

Library
    • Computer Fundamental
    • Computer Memory
    • DBMS Tutorial
    • Operating System
    • Computer Networking
    • C Programming
    • C++ Programming
    • Java Programming
    • C# Programming
    • SQL Tutorial
    • Management Tutorial
    • Computer Graphics
    • Compiler Design
    • Style Sheet
    • JavaScript Tutorial
    • Html Tutorial
    • Wordpress Tutorial
    • Python Tutorial
    • PHP Tutorial
    • JSP Tutorial
    • AngularJS Tutorial
    • Data Structures
    • E Commerce Tutorial
    • Visual Basic
    • Structs2 Tutorial
    • Digital Electronics
    • Internet Terms
    • Servlet Tutorial
    • Software Engineering
    • Interviews Questions
    • Basic Terms
    • Troubleshooting
Menu

Header Right

Home » Java » Multithreading » Explain Java Thread Model
Next →
← Prev

Explain Java Thread Model

By Dinesh Thakur

The Java language and its run-time system was designed keeping in mind about multithreading. The run-time system depend upon multithreading. Java provides asynchronous thread environment, this helps to increase the utilization of CPU.

Multithreading is best in all cases in contrast with single-thread model. Single-thread system uses an approach of event loop with polling. According to this approach a single thread in the system runs in an infinite loop. Polling the mechanism, that selects a single event from the event queue to choose what to do next. As the event is selected, then event loop forwards the control to the corresponding required event handler. Nothing else can be happened, until the event handler returns. Because of this CPU time is wasted. Here, only one part of the complete program is dominating the whole system, and preventing the system to execute or start any other process. In single-thread model one thread blocks all other threads until its execution completes. On other waiting or idle thread can start and acquire the resource which is not in use by the current thread. This causes the wastage of resources.

Java’s multithreading provides benefit in this area by eliminating the loop and polling mechanism, one thread can be paused without stopping the other parts of the program. If any thread is paused or blocked, still other threads continue to run.

As the process has several states, similarly a thread exists in several states. A thread can be in the following states:

Ready to run (New): First time as soon as it gets CPU time.

Running: Under execution.

Suspended: Temporarily not active or under execution.

Blocked: Waiting for resources.

Resumed: Suspended thread resumed, and start from where it left off.

Terminated: Halts the execution immediately and never resumes.

            Java Thread Model

Java thread model can be defined in the following three sections:

We’ll be covering the following topics in this tutorial:

  • Thread Priorities
  • Synchronization
  • Messaging

Thread Priorities

Each thread has its own priority in Java. Thread priority is an absolute integer value. Thread priority decides only when a thread switches from one running thread to next, called context switching. Priority does increase the running time of the thread or gives faster execution.

Synchronization

Java supports an asynchronous multithreading, any number of thread can run simultaneously without disturbing other to access individual resources at different instant of time or shareable resources. But some time it may be possible that shareable resources are used by at least two threads or more than two threads, one has to write at the same time, or one has to write and other thread is in the middle of reading it. For such type of situations and circumstances Java implements synchronization model called monitor. The monitor was first defined by C.A.R. Hoare. You can consider the monitor as a box, in which only one thread can reside. As a thread enter in monitor, all other threads have to wait until that thread exits from the monitor. In such a way, a monitor protects the shareable resources used by it being manipulated by other waiting threads at the same instant of time. Java provides a simple methodology to implement

synchronization.

Messaging

A program is a collection of more than one thread. Threads can communicate with each other. Java supports messaging between the threads with lost-cost. It provides methods to all objects for inter-thread communication. As a thread exits from synchronization state, it notifies all the waiting threads.

You’ll also like:

  1. Explain Thread Priorities in Multithreading
  2. Explain Inter-Thread Communication in Multithreading
  3. Explain Classical Life Cycle Model or linear sequential model
  4. What is Process Model? Explain Waterfall Model Along With its Limitations
  5. What do you Mean by Process Improvement and Maturity. Explain the CMM Model
Next →
← Prev
Like/Subscribe us for latest updates     

About Dinesh Thakur
Dinesh ThakurDinesh Thakur holds an B.C.A, MCDBA, MCSD certifications. Dinesh authors the hugely popular Computer Notes blog. Where he writes how-to guides around Computer fundamental , computer software, Computer programming, and web apps.

Dinesh Thakur is a Freelance Writer who helps different clients from all over the globe. Dinesh has written over 500+ blogs, 30+ eBooks, and 10000+ Posts for all types of clients.


For any type of query or something that you think is missing, please feel free to Contact us.


Primary Sidebar

Java Tutorials

Java Tutorials

  • Java - Home
  • Java - IDE
  • Java - Features
  • Java - History
  • Java - this Keyword
  • Java - Tokens
  • Java - Jump Statements
  • Java - Control Statements
  • Java - Literals
  • Java - Data Types
  • Java - Type Casting
  • Java - Constant
  • Java - Differences
  • Java - Keyword
  • Java - Static Keyword
  • Java - Variable Scope
  • Java - Identifiers
  • Java - Nested For Loop
  • Java - Vector
  • Java - Type Conversion Vs Casting
  • Java - Access Protection
  • Java - Implicit Type Conversion
  • Java - Type Casting
  • Java - Call by Value Vs Reference
  • Java - Collections
  • Java - Garbage Collection
  • Java - Scanner Class
  • Java - this Keyword
  • Java - Final Keyword
  • Java - Access Modifiers
  • Java - Design Patterns in Java

OOPS Concepts

  • Java - OOPS Concepts
  • Java - Characteristics of OOP
  • Java - OOPS Benefits
  • Java - Procedural Vs OOP's
  • Java - Polymorphism
  • Java - Encapsulation
  • Java - Multithreading
  • Java - Serialization

Java Operator & Types

  • Java - Operator
  • Java - Logical Operators
  • Java - Conditional Operator
  • Java - Assignment Operator
  • Java - Shift Operators
  • Java - Bitwise Complement Operator

Java Constructor & Types

  • Java - Constructor
  • Java - Copy Constructor
  • Java - String Constructors
  • Java - Parameterized Constructor

Java Array

  • Java - Array
  • Java - Accessing Array Elements
  • Java - ArrayList
  • Java - Passing Arrays to Methods
  • Java - Wrapper Class
  • Java - Singleton Class
  • Java - Access Specifiers
  • Java - Substring

Java Inheritance & Interfaces

  • Java - Inheritance
  • Java - Multilevel Inheritance
  • Java - Single Inheritance
  • Java - Abstract Class
  • Java - Abstraction
  • Java - Interfaces
  • Java - Extending Interfaces
  • Java - Method Overriding
  • Java - Method Overloading
  • Java - Super Keyword
  • Java - Multiple Inheritance

Exception Handling Tutorials

  • Java - Exception Handling
  • Java - Exception-Handling Advantages
  • Java - Final, Finally and Finalize

Data Structures

  • Java - Data Structures
  • Java - Bubble Sort

Advance Java

  • Java - Applet Life Cycle
  • Java - Applet Explaination
  • Java - Thread Model
  • Java - RMI Architecture
  • Java - Applet
  • Java - Swing Features
  • Java - Choice and list Control
  • Java - JFrame with Multiple JPanels
  • Java - Java Adapter Classes
  • Java - AWT Vs Swing
  • Java - Checkbox
  • Java - Byte Stream Classes
  • Java - Character Stream Classes
  • Java - Change Color of Applet
  • Java - Passing Parameters
  • Java - Html Applet Tag
  • Java - JComboBox
  • Java - CardLayout
  • Java - Keyboard Events
  • Java - Applet Run From CLI
  • Java - Applet Update Method
  • Java - Applet Display Methods
  • Java - Event Handling
  • Java - Scrollbar
  • Java - JFrame ContentPane Layout
  • Java - Class Rectangle
  • Java - Event Handling Model

Java programs

  • Java - Armstrong Number
  • Java - Program Structure
  • Java - Java Programs Types
  • Java - Font Class
  • Java - repaint()
  • Java - Thread Priority
  • Java - 1D Array
  • Java - 3x3 Matrix
  • Java - drawline()
  • Java - Prime Number Program
  • Java - Copy Data
  • Java - Calculate Area of Rectangle
  • Java - Strong Number Program
  • Java - Swap Elements of an Array
  • Java - Parameterized Constructor
  • Java - ActionListener
  • Java - Print Number
  • Java - Find Average Program
  • Java - Simple and Compound Interest
  • Java - Area of Rectangle
  • Java - Default Constructor Program
  • Java - Single Inheritance Program
  • Java - Array of Objects
  • Java - Passing 2D Array
  • Java - Compute the Bill
  • Java - BufferedReader Example
  • Java - Sum of First N Number
  • Java - Check Number
  • Java - Sum of Two 3x3 Matrices
  • Java - Calculate Circumference
  • Java - Perfect Number Program
  • Java - Factorial Program
  • Java - Reverse a String

Other Links

  • Java - PDF Version

Footer

Basic Course

  • Computer Fundamental
  • Computer Networking
  • Operating System
  • Database System
  • Computer Graphics
  • Management System
  • Software Engineering
  • Digital Electronics
  • Electronic Commerce
  • Compiler Design
  • Troubleshooting

Programming

  • Java Programming
  • Structured Query (SQL)
  • C Programming
  • C++ Programming
  • Visual Basic
  • Data Structures
  • Struts 2
  • Java Servlet
  • C# Programming
  • Basic Terms
  • Interviews

World Wide Web

  • Internet
  • Java Script
  • HTML Language
  • Cascading Style Sheet
  • Java Server Pages
  • Wordpress
  • PHP
  • Python Tutorial
  • AngularJS
  • Troubleshooting

 About Us |  Contact Us |  FAQ

Dinesh Thakur is a Technology Columinist and founder of Computer Notes.

Copyright © 2025. All Rights Reserved.

APPLY FOR ONLINE JOB IN BIGGEST CRYPTO COMPANIES
APPLY NOW