• Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Skip to footer

Computer Notes

Library
    • Computer Fundamental
    • Computer Memory
    • DBMS Tutorial
    • Operating System
    • Computer Networking
    • C Programming
    • C++ Programming
    • Java Programming
    • C# Programming
    • SQL Tutorial
    • Management Tutorial
    • Computer Graphics
    • Compiler Design
    • Style Sheet
    • JavaScript Tutorial
    • Html Tutorial
    • Wordpress Tutorial
    • Python Tutorial
    • PHP Tutorial
    • JSP Tutorial
    • AngularJS Tutorial
    • Data Structures
    • E Commerce Tutorial
    • Visual Basic
    • Structs2 Tutorial
    • Digital Electronics
    • Internet Terms
    • Servlet Tutorial
    • Software Engineering
    • Interviews Questions
    • Basic Terms
    • Troubleshooting
Menu

Header Right

Home » C » Pointer » Two-Dimensional Arrays Using a Pointer to Pointer
Next →
← Prev

Two-Dimensional Arrays Using a Pointer to Pointer

By Dinesh Thakur

Since a pointer to type T is analogous to an array of type T, a pointer to a pointer (T**) is analogous to an array of type T*, i. e., an array of pointers to type T. Each element in this array of pointers can be used further to point to an array of type T. Thus, a pointer to a pointer can be used to represent two-dimensional arrays, as illustrated in Fig.

Observe that we have a lot of flexibility in allocating memory for two-dimensional arrays. Thus, we can allocate a rectangular matrix (Fig a), a lower/upper triangular matrix (Fig b) and a ragged matrix in which each row can have different number of elements (Fig c). The use of a pointer to a pointer in conjunction with dynamic memory allocation is advantageous over a static matrix as it allows the allocation of a two-dimensional array of desired size and shape, avoiding wastage of memory.

Note that when a pointer to a pointer is declared, the memory is allocated only for the pointer variable. The memory for the pointer array and the two-dimensional array elements is usually allocated separately using dynamic memory allocation functions, namely, malloc or calloc.

             Representing two-dimensional arrays using a pointer to a pointer: (a) Regular matrix (b) Lower triangular matrix (c) Ragged matrix

A simplified function imat_alloc given below allocates a regular integer matrix of size m x n to variable tmp of type int ** and returns this pointer to the calling function

int **imat_alloc(int m, int n)

{

     int i;

     int **tmp = (int**) malloc(m * sizeof(int *));

     for(i = 0; i < m; i++)

     tmp[i] = (int*) malloc(n * sizeof(int));

     return tmp;

}

Note that the function return type is a pointer to a pointer to int, i.e., int ** and the function returns a value of correct type (as tmp is of type int ** ). First, malloc allocates memory form pointers (i. e., m* sizeof (int *)) and assigns the address of this block, after typecasting to int **, to variable tmp. Then a for loop is used to allocate memory for each row. The malloc function now allocates memory for n integers (i.e., n * sizeof (inti) and assigns the address of this block, after typecasting to int *, to the ith pointer tmp[i] . Finally, the value of tmp is returned.

As you have probably noticed, the error checking code has been omitted in imat_alloc function to keep the things simple and focus on memory allocation logic. Although this is okay for small programs, we should include the error handling code in actual applications. The modified function is given below.

/* allocate the memory for a dynamic matrix */

int **imat_alloc(int m, int n)

{

   int i;

   /* first allocate memory for pointer array */

   int **tmp = (int**) malloc(m * sizeof(int *));

   if (tmp == NULL) {

   printf(“Error: Out of memory …\n”);

   exit(1);

}

/* allocate memory for matrix rows */

for(i = 0; i < m; i++) {

tmp[i] = (int*) malloc(n * sizeof(int));

if (tmp[i] ==NULL) {

printf (“Error: Out of memory …\n”);

exit (1);

   }

  }

  return tmp;

}

This function can be called from any function to allocate a matrix as shown below.

int **a;

a= imat_alloc(m, n);

Note that now we cannot simply use the free function (as in free (a))to free the memory allocated to a matrix as it will only free the memory allocated to the pointer array. The function imat_free to free an integer matrix is given below. It accepts two parameters: a pointer to the matrix and the number of rows. It first uses a for loop to free the memory allocated to matrix rows and then frees the memory allocated to the pointer array.

void imat_free(int **a, int m)

{

  int i;

  /* free the memory allocated to matrix rows */

  for (i = 0; i < m; i++)

  free(a[i]);

  free(a); /* free the memory allocated to pointer array */

}

­ Illustrates pointers to one- and two-dimensional arrays

#include <stdio.h> 
void main()
{
    int i, j , k;
    int Array[2] [3] = {2,3,4,5,6,7 };
    int (*pArray) [3] = Array ;
    int Bray[4] = {10, 11, 12, 13};
    int *pBray = Bray;
    for ( k=0 ; k<4; k++)
       printf("Bray[%d] = %d\n", k, *(pBray + k ));
       for ( i=0 ; i<2; i++)
          for ( j =0; j<3; j++)
            {
               printf("Array[%d] [%d] = %d ", i, j, *(*(Array +i)+j));
               printf(",\tpArray[%d] [%d] = %d\n", i, j, *(*(pArray +i)+j));
            }
}

You’ll also like:

  1. Pointer to Three-Dimensional Arrays in C
  2. Write C++ Example to illustrate two dimensional array implemented as pointer to a pointer.
  3. One-Dimensional Array with Pointer in C
  4. Three-Dimensional Arrays in C
  5. C++ Declaration of One Dimensional Arrays
Next →
← Prev
Like/Subscribe us for latest updates     

About Dinesh Thakur
Dinesh ThakurDinesh Thakur holds an B.C.A, MCDBA, MCSD certifications. Dinesh authors the hugely popular Computer Notes blog. Where he writes how-to guides around Computer fundamental , computer software, Computer programming, and web apps.

Dinesh Thakur is a Freelance Writer who helps different clients from all over the globe. Dinesh has written over 500+ blogs, 30+ eBooks, and 10000+ Posts for all types of clients.


For any type of query or something that you think is missing, please feel free to Contact us.


Primary Sidebar

C Programming

C Programming Tutorials

  • C - History
  • C - Anatomy
  • C - Constants
  • C - Identifiers
  • C - Data Types
  • C - Libraries File
  • C - Header Files
  • C - Basic Language
  • C - Data Types Sizes
  • C - Header Files Importance
  • C - Escape Sequences
  • C - Main() Purpose
  • C - Program Procedure
  • C - Control Statements
  • C - Enumeration Constant
  • C - Add numbers
  • C - Return Statement
  • C - Avoid Goto
  • C - Command Line Arguments
  • C - Switch Case
  • C - Switch Case Limitations
  • C - getchar() and putchar()
  • C - Iteration Statements
  • C - Pass by Value and Reference
  • C - Structures and Unions
  • C - Structure
  • C - Dynamic Memory
  • C - Fgets and Fputs Functions
  • C - Gets() and Puts() Functions
  • C - Armstrong Number
  • C - Storage Classes
  • C - Fibonacci Series
  • C - Precision Setting
  • C - const Parameters

C - Variable & It's Type

  • C - Variables
  • C - Variable Lifetime
  • C - Static Variable
  • C - Register Variable
  • C - Global Variables
  • C - Auto Variables
  • C - Local Variables

C - Operator & Expressions

  • C - Operator
  • C - Boolean Operators
  • C - Bitwise Operator
  • C - Arithmetic Operators
  • C - Modulus Operator
  • C - Ternary Operator
  • C - Expressions
  • C - Arithmetic Expressions

C - Array

  • C - Arrays
  • C - Array Types
  • C - Array Characteristics
  • C - Static Arrays
  • C - Global Arrays
  • C - 3D Arrays
  • C - Dynamic Arrays
  • C - Pointer to 3D Arrays
  • C - Array Elements Hold
  • C - Arrays as Function Parameters
  • C - Accessing Matrix Elements
  • C - File Handling
  • C - Matrix Multiplication
  • C - Dynamic Memory Allocation

C - Searching & Sorting

  • C - Data Structures
  • C - Linear Search
  • C - Bubble Sort
  • C - Merge Sort
  • C - Linked List
  • C - Insertion Sort
  • C - Binary Search
  • C - Selection Sort
  • C - Quick Sort

C - Functions

  • C - Functions
  • C - Functions Advantages
  • C - Void Functions
  • C - Function Call
  • C - Default Return Value
  • C - String functions

C - Pointer

  • C - Pointers
  • C - Type Casting Of Pointers
  • C - Pointer Advantages
  • C - Pointers Initialization
  • C - Vectors and Pointers

C - Differences

  • C - C Vs C++
  • C - Formal Args. Vs Actual Args.
  • C - Keywords Vs Identifiers
  • C - Strings Vs Character Arrays
  • C - Address Vs Dereference Operator
  • C - Goto Vs longjmp
  • C - Declaring Vs Defining Variable
  • C - String Vs Array
  • C - Call by Value Vs Reference
  • C - Structure Vs Union
  • C - For Vs While loops
  • C - Compiler Vs Interpreter

C - Programs

  • C Program Standard Deviation
  • C Program Calculate Tax
  • C Program Sum Series
  • C Program Merge Arrays
  • C Program Euclid’s Algorithm
  • C Program Print Weekdays
  • C Program Sum of Digits
  • C Program Print a list
  • C Program Print Pythagorean
  • C Program Quiz program
  • C Program Display Table
  • C Program Print Comma-Separated
  • C Program Prints Prime Numbers
  • C Program for Print Integer
  • C Program Count Number
  • C Program Print Color Name
  • C Program Print Odd Numbers
  • C Program Calculate area
  • C Program for a Menu
  • C Program Add Two Vectors
  • C Program Array Addresses
  • C Program Division by Zero Error
  • C Program Compare two Dates
  • C Program Tower of Hanoi
  • C Program return 3 Numbers
  • C Program for Prime Numbers
  • C Program for Factorial
  • C Program for Palindrome

Other Links

  • C Programming - PDF Version

Footer

Basic Course

  • Computer Fundamental
  • Computer Networking
  • Operating System
  • Database System
  • Computer Graphics
  • Management System
  • Software Engineering
  • Digital Electronics
  • Electronic Commerce
  • Compiler Design
  • Troubleshooting

Programming

  • Java Programming
  • Structured Query (SQL)
  • C Programming
  • C++ Programming
  • Visual Basic
  • Data Structures
  • Struts 2
  • Java Servlet
  • C# Programming
  • Basic Terms
  • Interviews

World Wide Web

  • Internet
  • Java Script
  • HTML Language
  • Cascading Style Sheet
  • Java Server Pages
  • Wordpress
  • PHP
  • Python Tutorial
  • AngularJS
  • Troubleshooting

 About Us |  Contact Us |  FAQ

Dinesh Thakur is a Technology Columinist and founder of Computer Notes.

Copyright © 2025. All Rights Reserved.

APPLY FOR ONLINE JOB IN BIGGEST CRYPTO COMPANIES
APPLY NOW