• Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Skip to footer

Computer Notes

Library
    • Computer Fundamental
    • Computer Memory
    • DBMS Tutorial
    • Operating System
    • Computer Networking
    • C Programming
    • C++ Programming
    • Java Programming
    • C# Programming
    • SQL Tutorial
    • Management Tutorial
    • Computer Graphics
    • Compiler Design
    • Style Sheet
    • JavaScript Tutorial
    • Html Tutorial
    • Wordpress Tutorial
    • Python Tutorial
    • PHP Tutorial
    • JSP Tutorial
    • AngularJS Tutorial
    • Data Structures
    • E Commerce Tutorial
    • Visual Basic
    • Structs2 Tutorial
    • Digital Electronics
    • Internet Terms
    • Servlet Tutorial
    • Software Engineering
    • Interviews Questions
    • Basic Terms
    • Troubleshooting
Menu

Header Right

Home » C » Pointer » Typecast and sizeof Operators in C
Next →
← Prev

Typecast and sizeof Operators in C

By Dinesh Thakur

We can use typecast operator to convert the type of value returned by a pointer dereference expression to another suitable type. For example, if pa is a pointer to a variable a of type int, we can use typecast as (double) *pa to convert the integer value of *pa to type double.

The C language also allows us to use typecast to convert the type of a pointer, as in (char *) pa. This converts the pointer pa, which is assumed to be a pointer to int, to char *, i. e., a character pointer. Such typecasts are essential and are commonly used while dealing with void pointers. However, it should be used very carefully in other situations as it may lead to erroneous situations. For example, the expression *pa interprets the contents of two (or four) consecutive memory locations pointed to by pointer pa as an integer, whereas the expression * ( (char *) pa) interprets the contents of only one byte pointed to by pa, i. e., some part of integer value, as a character. Nevertheless, there are situations where this kind of conversion is useful, as illustrated in Example.

The sizeof operator, when used with a pointer variable, as in sizeof (pa), gives us the size of a pointer variable, i. e., memory required for its storage in bytes.

Example of function to print binary representation of numbers

Consider that we wish to print binary representations of numbers of different data types (int, short int, float, long double, etc.). One approach to do this is to write a separate function for each data type. However, this is tedious and time-consuming. Instead, we can write a single function named print_binary the as shown below.

void print_binary(unsigned char *pc, int n)

{

int i;

for(i = n – 1; i >= O; i–) /* process bytes from MSB to LSB */

print_char_bits(pc[i]);        /* print a byte in binary */

}

To handle different data types and sizes, this function accepts an unsigned character pointer to the variable to be printed and its size in bytes. The for loop is set up to process individual bytes starting with the most significant byte (which is the last byte on most computers as the numbers are stored starting with the least significant byte). The bit pattern of each byte is printed by calling the print_ char_ bits function given below.

void print_char_bits(unsigned char c)

{

int i;

unsigned char mask= Ox80; /* i.e. mask = 10000000 (binary) */

for(i = 7; i >= 0; i–)

{

printf(“%c”, (c & mask? ‘1’: ‘0’)); /*print bit at position i*/

mask >>= 1; /* shift ‘1’ in mask to right side */

}

printf (” “) ;

}

This function accepts a byte as an unsigned character and uses a for loop to process individual bits in a character starting with the most significant bit (i. e., bit 7). A mask is used to separate individual bits. It is initialized to Ox80 (i.e., 1000 00002) before the loop and in each iteration, .the bit pattern is shifted to the right by one position. The bit-wise and (&) operator is used along with the conditional operator to print a bit as

printf(“%c”, (c & mask? ‘1’ : ‘0’)); /*print bit at position i */

Note that to simplify the code, we can eliminate variable i and use variable mask as the loop variable as shown below.

void print_char_bits(unsigned char c)

{

unsigned char mask;

for(mask = Ox80; mask> 0; mask>>= 1) /* process bits MSB to LSB */

printf(“%c”, (c & mask? ‘1’ : ‘0’)); /*print current bit*/

printf(” “);

}

The main function used to print the binary representations of two numbers (of type short int and float) is given below.

int main()

{

short int a = 6;

float x = 1.23;

printf (“short int : %4hd Binary: “, a);

print_binary((unsigned char*) &a, sizeof(a));

printf(“\nfloat : %0.2f Binary: “, x);

print_binary( (unsigned char *).&x, sizeof(x));

return O;

}

Observe how the address of the variable to be printed is typecast to unsigned char *.The program output is given below.

short int : 6 Binary: 00000000 00000110

float : 1.23 Binary: 00111111 10011101 01110000 10100100

You’ll also like:

  1. sizeof() operator in C
  2. Write A C++ Program To Comparing Integers Using If Statements, Relational Operators And Equality Operators.
  3. What is Operators? Explain Scope Resolution Operator and Operators Precedence.
  4. C Program Write a Program with SizeOf with Struct
  5. Python Operators and Operands – Types of Operators in Python
Next →
← Prev
Like/Subscribe us for latest updates     

About Dinesh Thakur
Dinesh ThakurDinesh Thakur holds an B.C.A, MCDBA, MCSD certifications. Dinesh authors the hugely popular Computer Notes blog. Where he writes how-to guides around Computer fundamental , computer software, Computer programming, and web apps.

Dinesh Thakur is a Freelance Writer who helps different clients from all over the globe. Dinesh has written over 500+ blogs, 30+ eBooks, and 10000+ Posts for all types of clients.


For any type of query or something that you think is missing, please feel free to Contact us.


Primary Sidebar

C Programming

C Programming Tutorials

  • C - History
  • C - Anatomy
  • C - Constants
  • C - Identifiers
  • C - Data Types
  • C - Libraries File
  • C - Header Files
  • C - Basic Language
  • C - Data Types Sizes
  • C - Header Files Importance
  • C - Escape Sequences
  • C - Main() Purpose
  • C - Program Procedure
  • C - Control Statements
  • C - Enumeration Constant
  • C - Add numbers
  • C - Return Statement
  • C - Avoid Goto
  • C - Command Line Arguments
  • C - Switch Case
  • C - Switch Case Limitations
  • C - getchar() and putchar()
  • C - Iteration Statements
  • C - Pass by Value and Reference
  • C - Structures and Unions
  • C - Structure
  • C - Dynamic Memory
  • C - Fgets and Fputs Functions
  • C - Gets() and Puts() Functions
  • C - Armstrong Number
  • C - Storage Classes
  • C - Fibonacci Series
  • C - Precision Setting
  • C - const Parameters

C - Variable & It's Type

  • C - Variables
  • C - Variable Lifetime
  • C - Static Variable
  • C - Register Variable
  • C - Global Variables
  • C - Auto Variables
  • C - Local Variables

C - Operator & Expressions

  • C - Operator
  • C - Boolean Operators
  • C - Bitwise Operator
  • C - Arithmetic Operators
  • C - Modulus Operator
  • C - Ternary Operator
  • C - Expressions
  • C - Arithmetic Expressions

C - Array

  • C - Arrays
  • C - Array Types
  • C - Array Characteristics
  • C - Static Arrays
  • C - Global Arrays
  • C - 3D Arrays
  • C - Dynamic Arrays
  • C - Pointer to 3D Arrays
  • C - Array Elements Hold
  • C - Arrays as Function Parameters
  • C - Accessing Matrix Elements
  • C - File Handling
  • C - Matrix Multiplication
  • C - Dynamic Memory Allocation

C - Searching & Sorting

  • C - Data Structures
  • C - Linear Search
  • C - Bubble Sort
  • C - Merge Sort
  • C - Linked List
  • C - Insertion Sort
  • C - Binary Search
  • C - Selection Sort
  • C - Quick Sort

C - Functions

  • C - Functions
  • C - Functions Advantages
  • C - Void Functions
  • C - Function Call
  • C - Default Return Value
  • C - String functions

C - Pointer

  • C - Pointers
  • C - Type Casting Of Pointers
  • C - Pointer Advantages
  • C - Pointers Initialization
  • C - Vectors and Pointers

C - Differences

  • C - C Vs C++
  • C - Formal Args. Vs Actual Args.
  • C - Keywords Vs Identifiers
  • C - Strings Vs Character Arrays
  • C - Address Vs Dereference Operator
  • C - Goto Vs longjmp
  • C - Declaring Vs Defining Variable
  • C - String Vs Array
  • C - Call by Value Vs Reference
  • C - Structure Vs Union
  • C - For Vs While loops
  • C - Compiler Vs Interpreter

C - Programs

  • C Program Standard Deviation
  • C Program Calculate Tax
  • C Program Sum Series
  • C Program Merge Arrays
  • C Program Euclid’s Algorithm
  • C Program Print Weekdays
  • C Program Sum of Digits
  • C Program Print a list
  • C Program Print Pythagorean
  • C Program Quiz program
  • C Program Display Table
  • C Program Print Comma-Separated
  • C Program Prints Prime Numbers
  • C Program for Print Integer
  • C Program Count Number
  • C Program Print Color Name
  • C Program Print Odd Numbers
  • C Program Calculate area
  • C Program for a Menu
  • C Program Add Two Vectors
  • C Program Array Addresses
  • C Program Division by Zero Error
  • C Program Compare two Dates
  • C Program Tower of Hanoi
  • C Program return 3 Numbers
  • C Program for Prime Numbers
  • C Program for Factorial
  • C Program for Palindrome

Other Links

  • C Programming - PDF Version

Footer

Basic Course

  • Computer Fundamental
  • Computer Networking
  • Operating System
  • Database System
  • Computer Graphics
  • Management System
  • Software Engineering
  • Digital Electronics
  • Electronic Commerce
  • Compiler Design
  • Troubleshooting

Programming

  • Java Programming
  • Structured Query (SQL)
  • C Programming
  • C++ Programming
  • Visual Basic
  • Data Structures
  • Struts 2
  • Java Servlet
  • C# Programming
  • Basic Terms
  • Interviews

World Wide Web

  • Internet
  • Java Script
  • HTML Language
  • Cascading Style Sheet
  • Java Server Pages
  • Wordpress
  • PHP
  • Python Tutorial
  • AngularJS
  • Troubleshooting

 About Us |  Contact Us |  FAQ

Dinesh Thakur is a Technology Columinist and founder of Computer Notes.

Copyright © 2023. All Rights Reserved.