• Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Skip to footer

Computer Notes

Library
    • Computer Fundamental
    • Computer Memory
    • DBMS Tutorial
    • Operating System
    • Computer Networking
    • C Programming
    • C++ Programming
    • Java Programming
    • C# Programming
    • SQL Tutorial
    • Management Tutorial
    • Computer Graphics
    • Compiler Design
    • Style Sheet
    • JavaScript Tutorial
    • Html Tutorial
    • Wordpress Tutorial
    • Python Tutorial
    • PHP Tutorial
    • JSP Tutorial
    • AngularJS Tutorial
    • Data Structures
    • E Commerce Tutorial
    • Visual Basic
    • Structs2 Tutorial
    • Digital Electronics
    • Internet Terms
    • Servlet Tutorial
    • Software Engineering
    • Interviews Questions
    • Basic Terms
    • Troubleshooting
Menu

Header Right

Home » Database » Rdbms » What is Lock Granularity?
Next →
← Prev

What is Lock Granularity?

By Dinesh Thakur

It deals with the cost of implementing locks depending upon the space and time. Here, space refers to data structure in DBMS for each lock and time refers to handling of lock request and release.
The cost of implementing locks depends on the size of data items. There are two types of lock granularity:

• Fine granularity
• Coarse granularity
Fine granularity refers for small item sizes and coarse granularity refers for large item Sizes.

Here, Sizes decides on the basis:

• a database record
• a field value of a database record
• a disk block
• a whole file
• the whole database

If a typical transaction accesses a small number of records it is advantageous that the data item granularity is one record. If a transaction typically accesses many records of the same file it is better to have block or file granularity so that the transaction will consider all those records as one data item.

A too-fine granularity will increase the frequency of locks requests and locks releases, which therefore will add additional instructions. You must locate a balance between a too-fine and too-coarse granularity. The figure shows the relation between the throughput and the granularity of locks.

This illustration is a simple two axis chart. The vertical, or y axis, represents throughput.

The horizontal, or x axis, represents granularity going from fine to coarse as it moves out on the scale. An elongated bell curve shows the relationship of granularity on throughput. As granularity goes from fine to coarse, throughput gradually increases to a maximum level and, then slowly starts to decline. It shows that a compromise in granularity is necessary to reach maximum throughput.

You’ll also like:

  1. What is Lock? Type of Lock in DBMS.
  2. What is Dead Lock
Next →
← Prev
Like/Subscribe us for latest updates     

About Dinesh Thakur
Dinesh ThakurDinesh Thakur holds an B.C.A, MCDBA, MCSD certifications. Dinesh authors the hugely popular Computer Notes blog. Where he writes how-to guides around Computer fundamental , computer software, Computer programming, and web apps.

Dinesh Thakur is a Freelance Writer who helps different clients from all over the globe. Dinesh has written over 500+ blogs, 30+ eBooks, and 10000+ Posts for all types of clients.


For any type of query or something that you think is missing, please feel free to Contact us.


Primary Sidebar

DBMS

Database Management System

    • DBMS - Home
    • DBMS - Definition
    • DBMS - What is
    • DBMS - Entity Sets
    • DBMS - Components
    • DBMS - Languages
    • DBMS - Normalization
    • DBMS - Data Models
    • DBMS - Processing System
    • DBMS - Advantages
    • DBMS - ER-Model
    • DBMS - Functional Dependence
    • DBMS - Relational Model
    • DBMS - Architecture
    • DBMS - Network Model
    • DBMS - Approach
    • DBMS - Data Independence
    • DBMS - Relational Schema
    • DBMS - Instance
    • DBMS - Functions and Service
    • DBMS - Server
    • DBMS - DBA
    • DBMS - Instance & Schemas
    • DBMS - System Type
    • DBMS - DDL, DML and DCL
    • DBMS - Users
    • DBMS - Model
    • DBMS - System Structure
    • DBMS - Role of DBA
    • DBMS - Metadata
    • DBMS - ER-Diagram
    • DBMS - E-R Model Problems
    • DBMS - DBMS Vs.RDBMS
    • DBMS - Basic Construction of E-R
    • DBMS - E-R Notation
    • DBMS - Database View
    • DBMS - Concurrency Control
    • DBMS - Schema
    • DBMS - Procedure for Access
    • DBMS - Object
    • DBMS - dBase
    • DBMS - Relational Algebra
    • DBMS - Deadlock
    • DBMS - Relational Database
    • DBMS - Query
    • DBMS - Schema

DBMS Normal Forms

    • Database - CODD’S Rules
    • Database - 1NF
    • Database - 2NF
    • Database - 3NF
    • Database - 4NF
    • Database - 5NF
    • Database - BCNF

Advance Database

    • Database - File Organization
    • Database - Type Lock
    • Database - Transaction
    • Database - Key Type
    • Database - Relational Algebra
    • Database - Components
    • Database - Deadlock Detect
    • Database - Design Methodology
    • Database - Relational Operators
    • Database - Relational Calculus
    • Database - Lock Granularity
    • Database - Deadlocks Handling
    • Database - Concurrent Control
    • Database - Denormalization
    • Database - Starvation
    • Database - OODB
    • Database - Data Warehouse
    • Database - Fragmentation
    • Database - Data Replication
    • Database - Distributed
    • Database - Transparences
    • Database - ORDBMSS
    • Database - Data Mining
    • Database - Security
    • Database - DBTG
    • Database - OLAP
    • Database - Integrity
    • Database - Data Encryption
    • Database - Recover
    • Database - Data Protection

Some Other Advance Articls

  • Adv of Distributed DBMS
  • Homogeneous and Heterogeneous
  • Causes for Database Failure
  • DBMS Architecture
  • Features for Any DBMS
  • OLTP Systems Vs Data Warehousing
  • Data Warehousing Architecture

Other Links

  • DBMS - PDF Version

Footer

Basic Course

  • Computer Fundamental
  • Computer Networking
  • Operating System
  • Database System
  • Computer Graphics
  • Management System
  • Software Engineering
  • Digital Electronics
  • Electronic Commerce
  • Compiler Design
  • Troubleshooting

Programming

  • Java Programming
  • Structured Query (SQL)
  • C Programming
  • C++ Programming
  • Visual Basic
  • Data Structures
  • Struts 2
  • Java Servlet
  • C# Programming
  • Basic Terms
  • Interviews

World Wide Web

  • Internet
  • Java Script
  • HTML Language
  • Cascading Style Sheet
  • Java Server Pages
  • Wordpress
  • PHP
  • Python Tutorial
  • AngularJS
  • Troubleshooting

 About Us |  Contact Us |  FAQ

Dinesh Thakur is a Technology Columinist and founder of Computer Notes.

Copyright © 2023. All Rights Reserved.