• Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Skip to footer

Computer Notes

Library
    • Computer Fundamental
    • Computer Memory
    • DBMS Tutorial
    • Operating System
    • Computer Networking
    • C Programming
    • C++ Programming
    • Java Programming
    • C# Programming
    • SQL Tutorial
    • Management Tutorial
    • Computer Graphics
    • Compiler Design
    • Style Sheet
    • JavaScript Tutorial
    • Html Tutorial
    • Wordpress Tutorial
    • Python Tutorial
    • PHP Tutorial
    • JSP Tutorial
    • AngularJS Tutorial
    • Data Structures
    • E Commerce Tutorial
    • Visual Basic
    • Structs2 Tutorial
    • Digital Electronics
    • Internet Terms
    • Servlet Tutorial
    • Software Engineering
    • Interviews Questions
    • Basic Terms
    • Troubleshooting
Menu

Header Right

Home » Fundamental » database » What are Strong and Weak Entity Sets in DBMS
Next →
← Prev

What are Strong and Weak Entity Sets in DBMS

By Dinesh Thakur

The entity set which does not have sufficient attributes to form a primary key is called as Weak entity set. An entity set that has a primary key is called as Strong entity set. Consider an entity set Payment which has three attributes: payment_number, payment_date and payment_amount. Although each payment entity is distinct but payment for different loans may share the same payment number. Thus, this entity set does not have a primary key and it is an entity set. Each weak set must be a part of one-to-many relationship set.

A member of a strong entity set is called dominant entity and member of weak entity set is called as subordinate entity. A weak entity set does not have a primary key but we need a means of distinguishing among all those entries in the entity set that depend on one particular strong entity set. The discriminator of a weak entity set is a set of attributes that allows this distinction be made. For example, payment_number acts as discriminator for payment entity set. It is also called as the Partial key of the entity set.

The primary key of a weak entity set is formed by the primary key of the strong entity set on which the weak entity set is existence dependent plus the weak entity sets discriminator. In the above example {loan_number, payment_number} acts as primary key for payment entity set.

The relationship between weak entity and strong entity set is called as Identifying Relationship. In example, loan-payment is the identifying relationship for payment entity. A weak entity set is represented by doubly outlined box .and corresponding identifying relation by a doubly outlined diamond as shown in figure. Here double lines indicate total participation of weak entity in strong entity set it means that every payment must be related via loan-payment to some account. The arrow from loan-payment to loan indicates that each payment is for a single loan. The discriminator of a weak entity set is underlined with dashed lines rather than solid line.

Relation Between strong and weak entity set

Let us consider another scenario, where we want to store the information of employees and their dependents. The every employee may have zero to n number of dependents. Every dependent has an id number and name.

Now let us consider the following data base:

There are three employees having E# as 1, 2, and 3 respectively.

Employee having E# 1, has two dependents as 1, Rahat and 2, Chahat.

Employee having E# 2, has no dependents.

Employee having E# 3, has three dependents as 1, Raju; 2, Ruhi; 3 Raja.

Now, in case of Dependent entity id cannot act as primary key because it is not unique.

Thus, Dependent is a weak entity set having id as a discriminator. It has a total participation with the relationship “has” because no dependent can exist without the employees (the company is concerned with employees). The E-R diagram for the employee-dependent database is shown.

There are two tables need to created above e-r diagram. These are Employee having E# as single column which acts as primary key. The other table will be of Dependent having E#, id and name columns where primary key is the combination of (E# and id).

The tabular comparison between Strong Entity Set and Weak Entity Set is as follows:

Comparision Between Strong and Weak entity[/vc_column_text][/vc_column][/vc_row]

You’ll also like:

  1. What is DBMS? Advantages and Disadvantages of DBMS.
  2. Sets in Python
  3. What are the Components of DBMS?
  4. Strong Number Program in Java Example
  5. Difference between DBMS and RDBMS
Next →
← Prev
Like/Subscribe us for latest updates     

About Dinesh Thakur
Dinesh ThakurDinesh Thakur holds an B.C.A, MCDBA, MCSD certifications. Dinesh authors the hugely popular Computer Notes blog. Where he writes how-to guides around Computer fundamental , computer software, Computer programming, and web apps.

Dinesh Thakur is a Freelance Writer who helps different clients from all over the globe. Dinesh has written over 500+ blogs, 30+ eBooks, and 10000+ Posts for all types of clients.


For any type of query or something that you think is missing, please feel free to Contact us.


Primary Sidebar

DBMS

Database Management System

    • DBMS - Home
    • DBMS - Definition
    • DBMS - What is
    • DBMS - Entity Sets
    • DBMS - Components
    • DBMS - Languages
    • DBMS - Normalization
    • DBMS - Data Models
    • DBMS - Processing System
    • DBMS - Advantages
    • DBMS - ER-Model
    • DBMS - Functional Dependence
    • DBMS - Relational Model
    • DBMS - Architecture
    • DBMS - Network Model
    • DBMS - Approach
    • DBMS - Data Independence
    • DBMS - Relational Schema
    • DBMS - Instance
    • DBMS - Functions and Service
    • DBMS - Server
    • DBMS - DBA
    • DBMS - Instance & Schemas
    • DBMS - System Type
    • DBMS - DDL, DML and DCL
    • DBMS - Users
    • DBMS - Model
    • DBMS - System Structure
    • DBMS - Role of DBA
    • DBMS - Metadata
    • DBMS - ER-Diagram
    • DBMS - E-R Model Problems
    • DBMS - DBMS Vs.RDBMS
    • DBMS - Basic Construction of E-R
    • DBMS - E-R Notation
    • DBMS - Database View
    • DBMS - Concurrency Control
    • DBMS - Schema
    • DBMS - Procedure for Access
    • DBMS - Object
    • DBMS - dBase
    • DBMS - Relational Algebra
    • DBMS - Deadlock
    • DBMS - Relational Database
    • DBMS - Query
    • DBMS - Schema

DBMS Normal Forms

    • Database - CODD’S Rules
    • Database - 1NF
    • Database - 2NF
    • Database - 3NF
    • Database - 4NF
    • Database - 5NF
    • Database - BCNF

Advance Database

    • Database - File Organization
    • Database - Type Lock
    • Database - Transaction
    • Database - Key Type
    • Database - Relational Algebra
    • Database - Components
    • Database - Deadlock Detect
    • Database - Design Methodology
    • Database - Relational Operators
    • Database - Relational Calculus
    • Database - Lock Granularity
    • Database - Deadlocks Handling
    • Database - Concurrent Control
    • Database - Denormalization
    • Database - Starvation
    • Database - OODB
    • Database - Data Warehouse
    • Database - Fragmentation
    • Database - Data Replication
    • Database - Distributed
    • Database - Transparences
    • Database - ORDBMSS
    • Database - Data Mining
    • Database - Security
    • Database - DBTG
    • Database - OLAP
    • Database - Integrity
    • Database - Data Encryption
    • Database - Recover
    • Database - Data Protection

Some Other Advance Articls

  • Adv of Distributed DBMS
  • Homogeneous and Heterogeneous
  • Causes for Database Failure
  • DBMS Architecture
  • Features for Any DBMS
  • OLTP Systems Vs Data Warehousing
  • Data Warehousing Architecture

Other Links

  • DBMS - PDF Version

Footer

Basic Course

  • Computer Fundamental
  • Computer Networking
  • Operating System
  • Database System
  • Computer Graphics
  • Management System
  • Software Engineering
  • Digital Electronics
  • Electronic Commerce
  • Compiler Design
  • Troubleshooting

Programming

  • Java Programming
  • Structured Query (SQL)
  • C Programming
  • C++ Programming
  • Visual Basic
  • Data Structures
  • Struts 2
  • Java Servlet
  • C# Programming
  • Basic Terms
  • Interviews

World Wide Web

  • Internet
  • Java Script
  • HTML Language
  • Cascading Style Sheet
  • Java Server Pages
  • Wordpress
  • PHP
  • Python Tutorial
  • AngularJS
  • Troubleshooting

 About Us |  Contact Us |  FAQ

Dinesh Thakur is a Technology Columinist and founder of Computer Notes.

Copyright © 2025. All Rights Reserved.

APPLY FOR ONLINE JOB IN BIGGEST CRYPTO COMPANIES
APPLY NOW