• Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Skip to footer

Computer Notes

Library
    • Computer Fundamental
    • Computer Memory
    • DBMS Tutorial
    • Operating System
    • Computer Networking
    • C Programming
    • C++ Programming
    • Java Programming
    • C# Programming
    • SQL Tutorial
    • Management Tutorial
    • Computer Graphics
    • Compiler Design
    • Style Sheet
    • JavaScript Tutorial
    • Html Tutorial
    • Wordpress Tutorial
    • Python Tutorial
    • PHP Tutorial
    • JSP Tutorial
    • AngularJS Tutorial
    • Data Structures
    • E Commerce Tutorial
    • Visual Basic
    • Structs2 Tutorial
    • Digital Electronics
    • Internet Terms
    • Servlet Tutorial
    • Software Engineering
    • Interviews Questions
    • Basic Terms
    • Troubleshooting
Menu

Header Right

Home » Networking » Communication » Radio Wave – What is a Radio Wave Transmission?.
Next →
← Prev

Radio Wave – What is a Radio Wave Transmission?.

By Dinesh Thakur

Radio waves, also called radio waves as they were discovered by German physicist Heinrich Hertz in 1888, are electromagnetic waves, that is to say the combined oscillation of an electric field and a magnetic field. Radio waves, infrared, visible light, ultraviolet, X-rays or gamma rays are all examples of electromagnetic waves.

It is a technique where data is transmitted using radio waves and therefore energy travels through the air rather than copper or glass. Conceptually, radio, TV, cellular phones etc. uses radio transmission in one form or another. The radio waves can travel through walls and through an entire building. Depending upon the frequency, they can travel long distance or short distance. Satellite relay is the one example of long distance communication.

Therefore, each frequency range is divided into different bands, which has a specific range of frequencies in the radio frequency, (RF) spectrum. The RF is divided in different ranges starting from very low frequencies (VLF) to extremely high frequencies (EHF). Figure shows , each band with a defined upper and lower frequency “limit.

Radio Frequency range and types of Transmission MediaTwo transmitters cannot share the same frequency band because of mutual interference and therefore band usage is regulated. International use of the radio spectrum is regulated by the International Telecommunication Union (ITU). Domestic use of the radio spectrum is regulated by national agencies such as Wireless Planning and Coordination (WPC) in India. WPC assigns each transmission source a band of operation, a transmitter radiation pattern, and a maximum transmitter power.

Omni-directional or directional antennas are used to broadcast radio waves depending upon band. The transceiver unit, which comprises transmitter and receiver along with the antenna, determines the power of RF signal. Other characteristics of radio waves is that in vacuum all electromagnetic waves or radio waves travel at the same speed, i.e. at the speed of light which is equal to 3 x l08·meter per second. In any medium this speed gets reduced and also becomes frequency dependent. In case of copper the speed of light becomes approximately two-thirds of the speed of light.

The basic features of the radio waves are that:

• they are easy to generate

• they have same velocity in vacuum

• they may traverse long distances

• they are omni-directional

• they can penetrate building easily so they find extensive use in communication both indoor and outdoor

• they are frequency dependent. At low frequency they can pass through obstacles well but the power falls off sharply With distance from the source, as power is inversely proportional to cube of the distance from the source. At HF they travel in straight lines and bounce off obstacles.

Very Low Frequency (VLF)

The VLF method takes advantage of electromagnetic radiation generated in the low frequency band of 3-30 kHz by powerful radio transmitters used i~ long-range communications and navigational systems. At long distances from the source’, the electromagnetic field is planar and horizontal and the electric component E lies in a vertical plane perpendicular to the H component in the direction of propagation and follow the ground. AM uses VLF band. This band of frequencies cannot be used for data transfer because they offer relatively low bandwidth.

The following are the problems associated with radio frequency transmission.

Path Loss: SNR or signal to noise ratio is defined as the ratio of power of the received signal to power of the noise in the received signal. The performance of the communication system is good if this factor is improved. But the design will be more complex if this parameter is to be improved. Either increasing the transmitting power or reducing the distance between the transmitter and receiver can improve SNR.

Adjacent channel interference: Interference is another phenomenon that affects the radio frequency transmission, when the same frequency band is allocated to two adjacent transceivers, resulting in interference. Hence interference occurs when one useful signal is mixed up with another signal. This problem can be avoided by dividing the available band into sub-bands and allotting different bands to adjacent transceivers.

Multipath: Another problem with radio wave transmission is due to Multipath. A receiver at any point can get two types of signal from the transmitter. One is the direct signal and the other is the reflected signal. Every object reflects the radio wave. Hence, the receiver can get multiple reflected signals through various paths. The signal strength is additive at certain points and out of phase at some other points. Hence the receiver can get peak power at some points and minimum power at some other points. This phenomenon is known as frequency selective fading. By employing two antennas at quarter wavelength separation, this problem can be solved.

You’ll also like:

  1. Bound transmission media – What is Bound transmission media ? Type of bound transmission media Explain
  2. What is transmission media ? Types of transmission media.
  3. What is Data Transmission? Types of Data Transmission.
  4. Unbound transmission media – What is Unbound transmission media. Type of Unbound transmission media
  5. Cellular Radio Definition
Next →
← Prev
Like/Subscribe us for latest updates     

About Dinesh Thakur
Dinesh ThakurDinesh Thakur holds an B.C.A, MCDBA, MCSD certifications. Dinesh authors the hugely popular Computer Notes blog. Where he writes how-to guides around Computer fundamental , computer software, Computer programming, and web apps.

Dinesh Thakur is a Freelance Writer who helps different clients from all over the globe. Dinesh has written over 500+ blogs, 30+ eBooks, and 10000+ Posts for all types of clients.


For any type of query or something that you think is missing, please feel free to Contact us.


Primary Sidebar

Networking

Networking Tutorials

  • Network - Home
  • Network - Uses
  • Network - Advantages
  • Network - Classification
  • Network - Architecture Type
  • Nework - Networks Vs Comms

Networking Devices

  • Network - Modem
  • Network - Routers Types
  • Network - Bluetooth
  • Network - RS-232C
  • Network - Hub
  • Network - Devices
  • Network - Bridges
  • Network - Repeaters
  • Network - Routers
  • Network - Switching Hubs
  • Network - Transceiver
  • Network - Multiplexer
  • Network - Gateway
  • Network - BNC Connector
  • Network - Optical Connectors
  • Network - NICs
  • Networking Protocol

  • Protocol - Definition
  • Protocol - IP
  • Protocol - Aloha
  • Protocol - MAC Layer
  • Protocol - Sliding Window
  • Protocol - Stop & Wait
  • Protocol - Network Protocols
  • Protocol - Token Passing
  • Protocol - SIP
  • Protocol - Ad-Hoc Networks Routing
  • Protocol - Lap-f
  • Protocol - Point-to-Point
  • Protocol - PPP
  • Protocol - PPP Phases
  • Protocol - LDP
  • Protocol - MPLS
  • Protocol - MPOA
  • Protocol - HDLC
  • Protocol - Distance Vector routing
  • Protocol - IGMP
  • Protocol - ICMP
  • Protocol - SLIP
  • Protocol - DVMRP
  • Protocol - SDLC
  • Protocol - Routing
  • Protocol - UDP
  • Protocol - ARP and RARP
  • Protocol - Link-State
  • Protocol - ARP Table
  • Protocol - RTP
  • Protocol - NHRP
  • Network Addressing

  • Addressing - Home
  • Addressing - SubNetting
  • Addressing - Classless
  • Addressing - Classes or Classful
  • Addressing - IPV4 vs IPV6
  • Addressing - IPv6
  • Addressing - Subnet Mask
  • Addressing - MAC Address
  • Addressing - Supernetting
  • Addressing - Private IP
  • Addressing - IPv4
  • Addressing - Public IP
  • Addressing - Multihomed
  • Addressing - Indirect Addressing
  • Addressing - ASP
  • Addressing - VLSM
  • Addressing - Routing Algorithms
  • Addressing - Hierarchical Routing
  • Addressing - Routing
  • Addressing - Distributed Routing
  • Addressing - Data Routing
  • Addressing - Services
  • Addressing - IP forwarding
  • Addressing - Aging
  • Addressing - Algorithm CR
  • Networking Media

  • Transmission - Home
  • Transmission - Modes
  • Transmission - Media
  • Transmission - System
  • Transmission - Bound
  • Transmission - Unbound
  • Transmission - Baseband
  • Transmission - Wired
  • Transmission - Fiber Benfits
  • Transmission - Infrared
  • Transmission - UnGuided
  • Transmission - Microwave
  • Transmission - Infrared
  • Transmission - Radio Wave
  • Transmission - Network
  • Transmission - Digital Signal
  • Transmission - Data
  • Transmission - Asynchronous
  • Transmission - Sync Vs Async
  • Cable - Twisted-Pair
  • Cable - Coaxial
  • Cable - UTP and STP
  • Cable - Fiber Optics
  • Cable - Gigabit Ethernet
  • Cable - Fast Ethernet
  • Cable - Ethernet Cable
  • Cable - Fiber-Optic Using
  • Cable - CATV
  • Cable - 100Base T
  • Cable - 10BASE T
  • Cable - 10 Base 2
  • Cable - 10 Base 5
  • Networking Types

  • IEEE - 802.11
  • IEEE - 802.5
  • IEEE - 802.15
  • IEEE - 802.11e
  • IEEE - 802.11n
  • Network - Ethernet
  • Network - Arpanet
  • Network - Frame Relay
  • Network - X.25
  • Network - Telephone
  • Network - WSN
  • Network - Metro Ethernet
  • Network - WAN Ethernet
  • Network - Wireless Mesh
  • Network - SAN
  • Network - SNA
  • Network - Cisco Architecture
  • Network - Vlan
  • Network - FDDI
  • Network - 100VG-Any
  • Network - EPON
  • Network - ISDN
  • Network - ARCNet
  • Network - Passive Optical
  • Networking Reference Models

  • Models - TCP/IP
  • Models - OSI
  • Models - MAC Layer
  • Models - Network Layer
  • Models - MAC Layer Functions
  • Models - TCP/IP Vs OSI
  • Models - CSMA
  • Models - CSMA/CD
  • Models - CSMA/CA
  • Models - CDMA
  • Models - STDM
  • Models - FDMA
  • Models - TDMA
  • Models - SDH
  • Models - CDM
  • Models - Multiplexing
  • Models - Reference
  • Models - Random Access Methods
  • Models - TCP/IP Architecture
  • Models - FDM
  • Models - IP Header
  • Models - OTN
  • Models - Amplitude Levels
  • Models - MIMO
  • Models - Plesiochronous Media
  • Models - Half Duplex
  • Models - ISO Architecture
  • Models - Data-Link Layer
  • Models - WDM
  • Models - Duplex
  • Models - Ethernet FDSE
  • Networking Switching Techniques

  • Switching - Home
  • Switching - Techniques
  • Switching - Packet
  • Switching - Circuit
  • Switching - Message
  • Switching - Packet Vs virtual Circuit
  • Switching - Cell
  • Switching - ATM Cell Structure
  • Switching - Virtual Circuit Vs Datagram
  • Switching - Time Space
  • Switching - Modulation
  • Switching - Cell Relay
  • Switching - ATM Structure
  • Switching - VC Vs PVC
  • Switching - Packet and Circuit
  • Switching - VPC
  • Switching - IP
  • Switching - Logical Channels
  • Switching - TDM
  • Switching - FDM
  • Network Codes

  • Codes - CRC
  • Codes - Error Correction and Detection
  • Codes - Hamming
  • Codes - Piggybacking
  • Codes - Encoding Techniques
  • Codes - Error Control
  • Codes - Parity Check
  • Codes - Parity bit
  • Codes - Bit Error
  • Codes - CRC
  • Codes - Transmission Errors
  • Codes - Error Detection and Correction
  • Network Communication

  • Communication - Home
  • Communication - Satellite
  • Communication - Wireless
  • Communication - Data Type
  • Communication - Congestion Control
  • Communication - Network
  • Communication - Data
  • Communication - Software
  • Communication - Layering Process
  • Networking Signaling

  • Signal - Analog
  • Signal - Digital
  • Signal - Analog Vs Digital
  • Signal - Digitization
  • Network Security

  • Security - Home
  • Security - Requirements
  • Security - Threats
  • Security - Services

Other Links

  • Networking - PDF Version

Footer

Basic Course

  • Computer Fundamental
  • Computer Networking
  • Operating System
  • Database System
  • Computer Graphics
  • Management System
  • Software Engineering
  • Digital Electronics
  • Electronic Commerce
  • Compiler Design
  • Troubleshooting

Programming

  • Java Programming
  • Structured Query (SQL)
  • C Programming
  • C++ Programming
  • Visual Basic
  • Data Structures
  • Struts 2
  • Java Servlet
  • C# Programming
  • Basic Terms
  • Interviews

World Wide Web

  • Internet
  • Java Script
  • HTML Language
  • Cascading Style Sheet
  • Java Server Pages
  • Wordpress
  • PHP
  • Python Tutorial
  • AngularJS
  • Troubleshooting

 About Us |  Contact Us |  FAQ

Dinesh Thakur is a Technology Columinist and founder of Computer Notes.

Copyright © 2025. All Rights Reserved.

APPLY FOR ONLINE JOB IN BIGGEST CRYPTO COMPANIES
APPLY NOW