• Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Skip to footer

Computer Notes

Library
    • Computer Fundamental
    • Computer Memory
    • DBMS Tutorial
    • Operating System
    • Computer Networking
    • C Programming
    • C++ Programming
    • Java Programming
    • C# Programming
    • SQL Tutorial
    • Management Tutorial
    • Computer Graphics
    • Compiler Design
    • Style Sheet
    • JavaScript Tutorial
    • Html Tutorial
    • Wordpress Tutorial
    • Python Tutorial
    • PHP Tutorial
    • JSP Tutorial
    • AngularJS Tutorial
    • Data Structures
    • E Commerce Tutorial
    • Visual Basic
    • Structs2 Tutorial
    • Digital Electronics
    • Internet Terms
    • Servlet Tutorial
    • Software Engineering
    • Interviews Questions
    • Basic Terms
    • Troubleshooting
Menu

Header Right

Home » Networking » Switching » Packet Switching
Next →
← Prev

Packet Switching

By Dinesh Thakur

 You are familiar with the-concept of switching. Circuit switching is the study of data link layer. The services of networks are provided by using the concept of packet switching.

When the message block size is large, message switching suffers with long transmission delays. To overcome this problem, packet switching technique is used. Packet switching limits the length of the message to a fixed size. A long message in the message-switching scheme will be split into a sequence of fixed sized packets. The size or length of a packet may be between 1000 to a few thousand bits. Hence, the transmission time is usually short. Apart from the data field, a packet also contains a header and a trailer field. The header field consists of the source and destination addresses, and sequence number of the packet. The trailer field consists of checksum that is used for error control.

Packet switching can be used as an alternate to circuit switching. In the packet switched networks, data is sent in discrete units that have variable length. They are called as packets. There is a strict upper bound limit on the size of packets in a packet switch network. The packet contains data and various control information. The packet switched networks allow any host to send data to any other host without reserving the circuit. Multiple paths between a pair of sender and receiver may exist in a packet switched network. 

One path is selected between source and destination. Whenever the sender has data to send, it converts them into packets and forwards them to next computer or router. The router stores this packet till the output line is free.

Then, this packet is transferred to next computer or router (called as hop). This way, it moves to the destination hop by hop. All the packets belonging to a transmission may or may not take the same route. The route of a packet is decided by network layer protocols.

We’ll be covering the following topics in this tutorial:

  • Advantages of packet Switching
  • Disadvantages of Packet Switching
  • Types of Packet Switching

Advantages of packet Switching

1. The main advantage of packet switching is the efficiency of the network. In circuit switching network, a reserved circuit cannot be used by others, till the sender and receiver leave it. Even if no data is being sent on a reserved circuit, no one else can access the circuit. This results in network bandwidth wastage. The packet switching reduces network bandwidth wastage.

2. The other advantage is that the packet switching is more faults tolerant. In case of circuit switching, all the packets are lost if a router in the circuit is down as all the packets follow the same route. But, in case of packet switching network, the packets can be routed over the malfunctioning component of the network. This is because all the packets may follow a different route to the destination.

3. The circuit switching bills the user depending on the distance and duration of connection whereas packet switching network bill users only on the basis of duration of connectivity.

4. The advantage of circuit switching network over packet switching network is that the circuit switching network provides ordered delivery of packets. As all the packets follow the same route. They arrive in correct order at destination.

5. It uses a digital network. This method enables digital data to be directly transmitted to a destination, and is therefore appropriate for data communication systems.

6. High data transmission quality – The quality of data transmission in a packet switched network is kept high (error free) because the data distribution is checked and error detection is employed during data transmission.

Disadvantages of Packet Switching

The various disadvantage of Packet switching

1. Packets may be lost on their route, so sequence numbers are required to identify missing packets.

2. Switching nodes requires more processing power as the packet switching protocols are more complex.

3. Switching nodes for packet switching require large amount of RAM to handle large quantities of packets.

4. A significant data transmission delay occurs – Use of store and forward method causes a significant data transmission.

Types of Packet Switching

The packet switching has two approaches: Virtual Circuit approach and Datagram approach. WAN, ATM, frame relay and telephone networks use connection oriented virtual circuit approach; whereas internet relies on connectionless datagram based packet switching.

(i)  Virtual Circuit Packet Switching: In virtual circuit packet switching, a single route is chosen between the sender and receiver and all the packets are sent through this route. Every packet contains the virtual circuit number. As in circuit switching, virtual circuit needs call setup before actual transmission can be started. He routing is based on the virtual circuit number.set up phase

This approach preserves the relationship between all the packets belonging to a message.Just like circuit switching, virtual circuit approach has a set up, data transfer and tear down phases. Resources can be allocated during the set up phase, as in circuit switched networks or on demand, as in a datagram network. All the packets of a message follow the same path established during the connection. A virtual circuit network is normally implemented in the data link layer, while a circuit switched network is implemented in the physical layer and a datagram network in the network layer.

Phases in Virtual Circuit Packet Switching

(ii)   Datagram Packet Switching: In datagram packet switching each packet is transmitted without any regard to other packets. Every packet contain full packet of source and destination. Every packet is treated as individual, independent transmission.

Even if a packet is a part of multi-packet transmission the network treats it as though it existed alone. Packets in this approach are called datagrams. Datagram switching is done at the network layer. Figure show how a datagram approach is used to deliver four packets from station A to station D. All the four packets belong to same message but they may travel via different paths to reach the destination i.e. station D.

Datagram Packet Switching

Datagram approach can cause the datagrams to arrive at their destination out of order with different delays between the packets. Packets may also be lost or dropped because of lack of resources. The datagram networks are also referred as connectionless networks. Here connectionless means that the switch does not keep information about connection state. There are no connection establishment or tear down phases.

The datagram can arrive at the destination with a different order from the order in which they where sent. The source and destination address are used by the routers to decide the route for packets. Internet use datagram approach at the network layer.

You’ll also like:

  1. Distinguish between Datagram Packet switching and virtual Circuit switching
  2. Packet Switching and Circuit Switching
  3. Switching Hubs – What is Switching Hubs? Characteristics of Switching Hub.
  4. Switching Techniques
  5. What is IP Switching?
Next →
← Prev
Like/Subscribe us for latest updates     

About Dinesh Thakur
Dinesh ThakurDinesh Thakur holds an B.C.A, MCDBA, MCSD certifications. Dinesh authors the hugely popular Computer Notes blog. Where he writes how-to guides around Computer fundamental , computer software, Computer programming, and web apps.

Dinesh Thakur is a Freelance Writer who helps different clients from all over the globe. Dinesh has written over 500+ blogs, 30+ eBooks, and 10000+ Posts for all types of clients.


For any type of query or something that you think is missing, please feel free to Contact us.


Primary Sidebar

Networking

Networking Tutorials

  • Network - Home
  • Network - Uses
  • Network - Advantages
  • Network - Classification
  • Network - Architecture Type
  • Nework - Networks Vs Comms

Networking Devices

  • Network - Modem
  • Network - Routers Types
  • Network - Bluetooth
  • Network - RS-232C
  • Network - Hub
  • Network - Devices
  • Network - Bridges
  • Network - Repeaters
  • Network - Routers
  • Network - Switching Hubs
  • Network - Transceiver
  • Network - Multiplexer
  • Network - Gateway
  • Network - BNC Connector
  • Network - Optical Connectors
  • Network - NICs
  • Networking Protocol

  • Protocol - Definition
  • Protocol - IP
  • Protocol - Aloha
  • Protocol - MAC Layer
  • Protocol - Sliding Window
  • Protocol - Stop & Wait
  • Protocol - Network Protocols
  • Protocol - Token Passing
  • Protocol - SIP
  • Protocol - Ad-Hoc Networks Routing
  • Protocol - Lap-f
  • Protocol - Point-to-Point
  • Protocol - PPP
  • Protocol - PPP Phases
  • Protocol - LDP
  • Protocol - MPLS
  • Protocol - MPOA
  • Protocol - HDLC
  • Protocol - Distance Vector routing
  • Protocol - IGMP
  • Protocol - ICMP
  • Protocol - SLIP
  • Protocol - DVMRP
  • Protocol - SDLC
  • Protocol - Routing
  • Protocol - UDP
  • Protocol - ARP and RARP
  • Protocol - Link-State
  • Protocol - ARP Table
  • Protocol - RTP
  • Protocol - NHRP
  • Network Addressing

  • Addressing - Home
  • Addressing - SubNetting
  • Addressing - Classless
  • Addressing - Classes or Classful
  • Addressing - IPV4 vs IPV6
  • Addressing - IPv6
  • Addressing - Subnet Mask
  • Addressing - MAC Address
  • Addressing - Supernetting
  • Addressing - Private IP
  • Addressing - IPv4
  • Addressing - Public IP
  • Addressing - Multihomed
  • Addressing - Indirect Addressing
  • Addressing - ASP
  • Addressing - VLSM
  • Addressing - Routing Algorithms
  • Addressing - Hierarchical Routing
  • Addressing - Routing
  • Addressing - Distributed Routing
  • Addressing - Data Routing
  • Addressing - Services
  • Addressing - IP forwarding
  • Addressing - Aging
  • Addressing - Algorithm CR
  • Networking Media

  • Transmission - Home
  • Transmission - Modes
  • Transmission - Media
  • Transmission - System
  • Transmission - Bound
  • Transmission - Unbound
  • Transmission - Baseband
  • Transmission - Wired
  • Transmission - Fiber Benfits
  • Transmission - Infrared
  • Transmission - UnGuided
  • Transmission - Microwave
  • Transmission - Infrared
  • Transmission - Radio Wave
  • Transmission - Network
  • Transmission - Digital Signal
  • Transmission - Data
  • Transmission - Asynchronous
  • Transmission - Sync Vs Async
  • Cable - Twisted-Pair
  • Cable - Coaxial
  • Cable - UTP and STP
  • Cable - Fiber Optics
  • Cable - Gigabit Ethernet
  • Cable - Fast Ethernet
  • Cable - Ethernet Cable
  • Cable - Fiber-Optic Using
  • Cable - CATV
  • Cable - 100Base T
  • Cable - 10BASE T
  • Cable - 10 Base 2
  • Cable - 10 Base 5
  • Networking Types

  • IEEE - 802.11
  • IEEE - 802.5
  • IEEE - 802.15
  • IEEE - 802.11e
  • IEEE - 802.11n
  • Network - Ethernet
  • Network - Arpanet
  • Network - Frame Relay
  • Network - X.25
  • Network - Telephone
  • Network - WSN
  • Network - Metro Ethernet
  • Network - WAN Ethernet
  • Network - Wireless Mesh
  • Network - SAN
  • Network - SNA
  • Network - Cisco Architecture
  • Network - Vlan
  • Network - FDDI
  • Network - 100VG-Any
  • Network - EPON
  • Network - ISDN
  • Network - ARCNet
  • Network - Passive Optical
  • Networking Reference Models

  • Models - TCP/IP
  • Models - OSI
  • Models - MAC Layer
  • Models - Network Layer
  • Models - MAC Layer Functions
  • Models - TCP/IP Vs OSI
  • Models - CSMA
  • Models - CSMA/CD
  • Models - CSMA/CA
  • Models - CDMA
  • Models - STDM
  • Models - FDMA
  • Models - TDMA
  • Models - SDH
  • Models - CDM
  • Models - Multiplexing
  • Models - Reference
  • Models - Random Access Methods
  • Models - TCP/IP Architecture
  • Models - FDM
  • Models - IP Header
  • Models - OTN
  • Models - Amplitude Levels
  • Models - MIMO
  • Models - Plesiochronous Media
  • Models - Half Duplex
  • Models - ISO Architecture
  • Models - Data-Link Layer
  • Models - WDM
  • Models - Duplex
  • Models - Ethernet FDSE
  • Networking Switching Techniques

  • Switching - Home
  • Switching - Techniques
  • Switching - Packet
  • Switching - Circuit
  • Switching - Message
  • Switching - Packet Vs virtual Circuit
  • Switching - Cell
  • Switching - ATM Cell Structure
  • Switching - Virtual Circuit Vs Datagram
  • Switching - Time Space
  • Switching - Modulation
  • Switching - Cell Relay
  • Switching - ATM Structure
  • Switching - VC Vs PVC
  • Switching - Packet and Circuit
  • Switching - VPC
  • Switching - IP
  • Switching - Logical Channels
  • Switching - TDM
  • Switching - FDM
  • Network Codes

  • Codes - CRC
  • Codes - Error Correction and Detection
  • Codes - Hamming
  • Codes - Piggybacking
  • Codes - Encoding Techniques
  • Codes - Error Control
  • Codes - Parity Check
  • Codes - Parity bit
  • Codes - Bit Error
  • Codes - CRC
  • Codes - Transmission Errors
  • Codes - Error Detection and Correction
  • Network Communication

  • Communication - Home
  • Communication - Satellite
  • Communication - Wireless
  • Communication - Data Type
  • Communication - Congestion Control
  • Communication - Network
  • Communication - Data
  • Communication - Software
  • Communication - Layering Process
  • Networking Signaling

  • Signal - Analog
  • Signal - Digital
  • Signal - Analog Vs Digital
  • Signal - Digitization
  • Network Security

  • Security - Home
  • Security - Requirements
  • Security - Threats
  • Security - Services

Other Links

  • Networking - PDF Version

Footer

Basic Course

  • Computer Fundamental
  • Computer Networking
  • Operating System
  • Database System
  • Computer Graphics
  • Management System
  • Software Engineering
  • Digital Electronics
  • Electronic Commerce
  • Compiler Design
  • Troubleshooting

Programming

  • Java Programming
  • Structured Query (SQL)
  • C Programming
  • C++ Programming
  • Visual Basic
  • Data Structures
  • Struts 2
  • Java Servlet
  • C# Programming
  • Basic Terms
  • Interviews

World Wide Web

  • Internet
  • Java Script
  • HTML Language
  • Cascading Style Sheet
  • Java Server Pages
  • Wordpress
  • PHP
  • Python Tutorial
  • AngularJS
  • Troubleshooting

 About Us |  Contact Us |  FAQ

Dinesh Thakur is a Technology Columinist and founder of Computer Notes.

Copyright © 2025. All Rights Reserved.

APPLY FOR ONLINE JOB IN BIGGEST CRYPTO COMPANIES
APPLY NOW