• Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Skip to footer

Computer Notes

Library
    • Computer Fundamental
    • Computer Memory
    • DBMS Tutorial
    • Operating System
    • Computer Networking
    • C Programming
    • C++ Programming
    • Java Programming
    • C# Programming
    • SQL Tutorial
    • Management Tutorial
    • Computer Graphics
    • Compiler Design
    • Style Sheet
    • JavaScript Tutorial
    • Html Tutorial
    • Wordpress Tutorial
    • Python Tutorial
    • PHP Tutorial
    • JSP Tutorial
    • AngularJS Tutorial
    • Data Structures
    • E Commerce Tutorial
    • Visual Basic
    • Structs2 Tutorial
    • Digital Electronics
    • Internet Terms
    • Servlet Tutorial
    • Software Engineering
    • Interviews Questions
    • Basic Terms
    • Troubleshooting
Menu

Header Right

Home » Networking » Technologies » What is Error Detection and Correction?
Next →
← Prev

What is Error Detection and Correction?

By Dinesh Thakur

The application of methods derived from INFORMATION THEORY to the detection and correcting of errors in DIGITAL data streams. Error correction is of the utmost importance in most areas of computing and communications technology. For example: Internet’s TCP protocol provides error detection, CD-ROMS devote around 14% of their total data capacity to redundant error correction information (and music CDS only a little less), and modem speeds above 28 kilobits per second would be impossible over public telephone lines without error correcting PROTOCOLS such as v.90.

All error detection methods involve adding redundant (Le. non-data) bits to each data word, and up to a point the more redundancy added the more errors can be detected and corrected. For example adding a single redundant bit and calculating the PARITY of a message allows the fact that a single bit has changed to be detected, but not to be located for correction. Using more redundant bits allows multiple bit errors to be both detected and corrected. For example a REED-MULLER CODE employed by NASA to send image data from interplanetary probes sends 32 bits for each s-bit PIXEL value, and can detect and correct corruption of up to 7 of those bits. The related REED-SOLOMON CODE provides the redundant bits on CD-ROM and hard disk drives.

You’ll also like:

  1. What is Error Correction and Detection?
  2. What is compile error, time error, logical error,, when does it occur, and what might it cause it
  3. How Does a Single Bit Error Differs From Burst Error.
  4. Error Handling and Error Recovery In Syntax Analyzer
  5. Error – What is Error? Type of Error.
Next →
← Prev
Like/Subscribe us for latest updates     

About Dinesh Thakur
Dinesh ThakurDinesh Thakur holds an B.C.A, MCDBA, MCSD certifications. Dinesh authors the hugely popular Computer Notes blog. Where he writes how-to guides around Computer fundamental , computer software, Computer programming, and web apps.

Dinesh Thakur is a Freelance Writer who helps different clients from all over the globe. Dinesh has written over 500+ blogs, 30+ eBooks, and 10000+ Posts for all types of clients.


For any type of query or something that you think is missing, please feel free to Contact us.


Primary Sidebar

Networking

Networking Tutorials

  • Network - Home
  • Network - Uses
  • Network - Advantages
  • Network - Classification
  • Network - Architecture Type
  • Nework - Networks Vs Comms

Networking Devices

  • Network - Modem
  • Network - Routers Types
  • Network - Bluetooth
  • Network - RS-232C
  • Network - Hub
  • Network - Devices
  • Network - Bridges
  • Network - Repeaters
  • Network - Routers
  • Network - Switching Hubs
  • Network - Transceiver
  • Network - Multiplexer
  • Network - Gateway
  • Network - BNC Connector
  • Network - Optical Connectors
  • Network - NICs
  • Networking Protocol

  • Protocol - Definition
  • Protocol - IP
  • Protocol - Aloha
  • Protocol - MAC Layer
  • Protocol - Sliding Window
  • Protocol - Stop & Wait
  • Protocol - Network Protocols
  • Protocol - Token Passing
  • Protocol - SIP
  • Protocol - Ad-Hoc Networks Routing
  • Protocol - Lap-f
  • Protocol - Point-to-Point
  • Protocol - PPP
  • Protocol - PPP Phases
  • Protocol - LDP
  • Protocol - MPLS
  • Protocol - MPOA
  • Protocol - HDLC
  • Protocol - Distance Vector routing
  • Protocol - IGMP
  • Protocol - ICMP
  • Protocol - SLIP
  • Protocol - DVMRP
  • Protocol - SDLC
  • Protocol - Routing
  • Protocol - UDP
  • Protocol - ARP and RARP
  • Protocol - Link-State
  • Protocol - ARP Table
  • Protocol - RTP
  • Protocol - NHRP
  • Network Addressing

  • Addressing - Home
  • Addressing - SubNetting
  • Addressing - Classless
  • Addressing - Classes or Classful
  • Addressing - IPV4 vs IPV6
  • Addressing - IPv6
  • Addressing - Subnet Mask
  • Addressing - MAC Address
  • Addressing - Supernetting
  • Addressing - Private IP
  • Addressing - IPv4
  • Addressing - Public IP
  • Addressing - Multihomed
  • Addressing - Indirect Addressing
  • Addressing - ASP
  • Addressing - VLSM
  • Addressing - Routing Algorithms
  • Addressing - Hierarchical Routing
  • Addressing - Routing
  • Addressing - Distributed Routing
  • Addressing - Data Routing
  • Addressing - Services
  • Addressing - IP forwarding
  • Addressing - Aging
  • Addressing - Algorithm CR
  • Networking Media

  • Transmission - Home
  • Transmission - Modes
  • Transmission - Media
  • Transmission - System
  • Transmission - Bound
  • Transmission - Unbound
  • Transmission - Baseband
  • Transmission - Wired
  • Transmission - Fiber Benfits
  • Transmission - Infrared
  • Transmission - UnGuided
  • Transmission - Microwave
  • Transmission - Infrared
  • Transmission - Radio Wave
  • Transmission - Network
  • Transmission - Digital Signal
  • Transmission - Data
  • Transmission - Asynchronous
  • Transmission - Sync Vs Async
  • Cable - Twisted-Pair
  • Cable - Coaxial
  • Cable - UTP and STP
  • Cable - Fiber Optics
  • Cable - Gigabit Ethernet
  • Cable - Fast Ethernet
  • Cable - Ethernet Cable
  • Cable - Fiber-Optic Using
  • Cable - CATV
  • Cable - 100Base T
  • Cable - 10BASE T
  • Cable - 10 Base 2
  • Cable - 10 Base 5
  • Networking Types

  • IEEE - 802.11
  • IEEE - 802.5
  • IEEE - 802.15
  • IEEE - 802.11e
  • IEEE - 802.11n
  • Network - Ethernet
  • Network - Arpanet
  • Network - Frame Relay
  • Network - X.25
  • Network - Telephone
  • Network - WSN
  • Network - Metro Ethernet
  • Network - WAN Ethernet
  • Network - Wireless Mesh
  • Network - SAN
  • Network - SNA
  • Network - Cisco Architecture
  • Network - Vlan
  • Network - FDDI
  • Network - 100VG-Any
  • Network - EPON
  • Network - ISDN
  • Network - ARCNet
  • Network - Passive Optical
  • Networking Reference Models

  • Models - TCP/IP
  • Models - OSI
  • Models - MAC Layer
  • Models - Network Layer
  • Models - MAC Layer Functions
  • Models - TCP/IP Vs OSI
  • Models - CSMA
  • Models - CSMA/CD
  • Models - CSMA/CA
  • Models - CDMA
  • Models - STDM
  • Models - FDMA
  • Models - TDMA
  • Models - SDH
  • Models - CDM
  • Models - Multiplexing
  • Models - Reference
  • Models - Random Access Methods
  • Models - TCP/IP Architecture
  • Models - FDM
  • Models - IP Header
  • Models - OTN
  • Models - Amplitude Levels
  • Models - MIMO
  • Models - Plesiochronous Media
  • Models - Half Duplex
  • Models - ISO Architecture
  • Models - Data-Link Layer
  • Models - WDM
  • Models - Duplex
  • Models - Ethernet FDSE
  • Networking Switching Techniques

  • Switching - Home
  • Switching - Techniques
  • Switching - Packet
  • Switching - Circuit
  • Switching - Message
  • Switching - Packet Vs virtual Circuit
  • Switching - Cell
  • Switching - ATM Cell Structure
  • Switching - Virtual Circuit Vs Datagram
  • Switching - Time Space
  • Switching - Modulation
  • Switching - Cell Relay
  • Switching - ATM Structure
  • Switching - VC Vs PVC
  • Switching - Packet and Circuit
  • Switching - VPC
  • Switching - IP
  • Switching - Logical Channels
  • Switching - TDM
  • Switching - FDM
  • Network Codes

  • Codes - CRC
  • Codes - Error Correction and Detection
  • Codes - Hamming
  • Codes - Piggybacking
  • Codes - Encoding Techniques
  • Codes - Error Control
  • Codes - Parity Check
  • Codes - Parity bit
  • Codes - Bit Error
  • Codes - CRC
  • Codes - Transmission Errors
  • Codes - Error Detection and Correction
  • Network Communication

  • Communication - Home
  • Communication - Satellite
  • Communication - Wireless
  • Communication - Data Type
  • Communication - Congestion Control
  • Communication - Network
  • Communication - Data
  • Communication - Software
  • Communication - Layering Process
  • Networking Signaling

  • Signal - Analog
  • Signal - Digital
  • Signal - Analog Vs Digital
  • Signal - Digitization
  • Network Security

  • Security - Home
  • Security - Requirements
  • Security - Threats
  • Security - Services

Other Links

  • Networking - PDF Version

Footer

Basic Course

  • Computer Fundamental
  • Computer Networking
  • Operating System
  • Database System
  • Computer Graphics
  • Management System
  • Software Engineering
  • Digital Electronics
  • Electronic Commerce
  • Compiler Design
  • Troubleshooting

Programming

  • Java Programming
  • Structured Query (SQL)
  • C Programming
  • C++ Programming
  • Visual Basic
  • Data Structures
  • Struts 2
  • Java Servlet
  • C# Programming
  • Basic Terms
  • Interviews

World Wide Web

  • Internet
  • Java Script
  • HTML Language
  • Cascading Style Sheet
  • Java Server Pages
  • Wordpress
  • PHP
  • Python Tutorial
  • AngularJS
  • Troubleshooting

 About Us |  Contact Us |  FAQ

Dinesh Thakur is a Technology Columinist and founder of Computer Notes.

Copyright © 2025. All Rights Reserved.

APPLY FOR ONLINE JOB IN BIGGEST CRYPTO COMPANIES
APPLY NOW