• Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Skip to footer

Computer Notes

Library
    • Computer Fundamental
    • Computer Memory
    • DBMS Tutorial
    • Operating System
    • Computer Networking
    • C Programming
    • C++ Programming
    • Java Programming
    • C# Programming
    • SQL Tutorial
    • Management Tutorial
    • Computer Graphics
    • Compiler Design
    • Style Sheet
    • JavaScript Tutorial
    • Html Tutorial
    • Wordpress Tutorial
    • Python Tutorial
    • PHP Tutorial
    • JSP Tutorial
    • AngularJS Tutorial
    • Data Structures
    • E Commerce Tutorial
    • Visual Basic
    • Structs2 Tutorial
    • Digital Electronics
    • Internet Terms
    • Servlet Tutorial
    • Software Engineering
    • Interviews Questions
    • Basic Terms
    • Troubleshooting
Menu

Header Right

Home » Networking » Technologies » What is Wireless mesh network?
Next →
← Prev

What is Wireless mesh network?

By Dinesh Thakur

Mesh networks (meshed networks) are ad-hoc networks in which routing points are immobile. Customers are connected by a wireless network access points and the access points are connected by wireless links.

The advantage of these networks is that they can cover a large geographical area, without the need for laying cables. For example, on a large campus, the access points can be set on the roofs of various buildings without the architect of the network has to worry about connecting access points to a wired Ethernet system.

Several opportunities are emerging to make a mesh network:

• Use the same frequency as the terminals, considering that the access points are treated as terminal machines. The downside of course is to use bandwidth taken from the other terminal machines. Also, be careful that two access points are not too far apart and not require the transmitter and receiver to lower their speed. This solution is considered first generation mesh networks.

• Use different frequencies. For example, an 802.11b Wi-Fi network with three frequencies available, it is possible to use two communication cards with different frequencies. The downside is of course disturbing the frequency plan, especially if the network is large and has many access points. This solution is part of the second generation of mesh networks.

• Still in the second generation, the mesh network uses a different standard to connect the access points between them. For example, an 802.11g mesh network can use the 802.11a IEEE standard for interconnecting the access points.

• It is considered that the third generation using three frequencies in total. One to connect customers and to interconnect the two access points. In this case, the upstream and downstream connections of the same node using different frequencies. It usually uses 802.11a, which has up to eight different frequencies.

Mesh networks pose new problems for wireless networks, including: how to optimize the battery access points if they are not connected to the electric current? how to optimize routing to avoid disrupting user traffic from access points, especially if they are already saturated? what density of access points should be used, which is to ask the question of the power of access points?

The advantage of this technology is to be able to easily reconfigure when an access point fails. Guests can connect to another access point, even slightly increase the power of neighboring access points that failed.

The main problem is to manage the routing. The latter is treated in the access points that are not very powerful machines, and we must therefore avoid access points that support a lot of traffic from connected clients. Many proposals are being discussed, primarily those from ad-hoc networks.

The IEEE working group also 802.11sa this. Following fifteen proposals, the group selected two proposals the SEE-Mesh and Wi-Mesh, who have come together to form a single proposal. This proposal has become a standard in April 2007, after many discussions implementation. The access points and stations that have the 802.11s routing algorithm are appointed Mesh Points (MP). Radio links are used to interconnect them. The default protocol is HWMP (Hybrid Wireless Mesh Protocol). This hybrid protocol is a combination of a protocol from AODV, the RM-AODV (Radio-Metric AODV) and an algorithm based on the trees. A second protocol may be used when MP accepts: RA-OLSR (Radio-Aware OLSR).

The IEEE 802.11s group also defines security solutions for mesh networks. To do this, define mutual authentication MP, generate and control the session keys, enabling data encryption on the lines of the ad hoc network and detect attacks. To do this, perform authentications using the IEEE 802.1x protocol. The session keys are managed by a PKI (Public Key Infrastructure), dedicated to safety. Confidentiality is ensured by the IEEE 802.11i standard.

You’ll also like:

  1. What is wireless sensor network (WSN)?
  2. Types of Wireless Networks
  3. Wireless Communication – What is Wireless Communication?
  4. What is 4G Wireless?
  5. Basic Wireless Principles
Next →
← Prev
Like/Subscribe us for latest updates     

About Dinesh Thakur
Dinesh ThakurDinesh Thakur holds an B.C.A, MCDBA, MCSD certifications. Dinesh authors the hugely popular Computer Notes blog. Where he writes how-to guides around Computer fundamental , computer software, Computer programming, and web apps.

Dinesh Thakur is a Freelance Writer who helps different clients from all over the globe. Dinesh has written over 500+ blogs, 30+ eBooks, and 10000+ Posts for all types of clients.


For any type of query or something that you think is missing, please feel free to Contact us.


Primary Sidebar

Networking

Networking Tutorials

  • Network - Home
  • Network - Uses
  • Network - Advantages
  • Network - Classification
  • Network - Architecture Type
  • Nework - Networks Vs Comms

Networking Devices

  • Network - Modem
  • Network - Routers Types
  • Network - Bluetooth
  • Network - RS-232C
  • Network - Hub
  • Network - Devices
  • Network - Bridges
  • Network - Repeaters
  • Network - Routers
  • Network - Switching Hubs
  • Network - Transceiver
  • Network - Multiplexer
  • Network - Gateway
  • Network - BNC Connector
  • Network - Optical Connectors
  • Network - NICs
  • Networking Protocol

  • Protocol - Definition
  • Protocol - IP
  • Protocol - Aloha
  • Protocol - MAC Layer
  • Protocol - Sliding Window
  • Protocol - Stop & Wait
  • Protocol - Network Protocols
  • Protocol - Token Passing
  • Protocol - SIP
  • Protocol - Ad-Hoc Networks Routing
  • Protocol - Lap-f
  • Protocol - Point-to-Point
  • Protocol - PPP
  • Protocol - PPP Phases
  • Protocol - LDP
  • Protocol - MPLS
  • Protocol - MPOA
  • Protocol - HDLC
  • Protocol - Distance Vector routing
  • Protocol - IGMP
  • Protocol - ICMP
  • Protocol - SLIP
  • Protocol - DVMRP
  • Protocol - SDLC
  • Protocol - Routing
  • Protocol - UDP
  • Protocol - ARP and RARP
  • Protocol - Link-State
  • Protocol - ARP Table
  • Protocol - RTP
  • Protocol - NHRP
  • Network Addressing

  • Addressing - Home
  • Addressing - SubNetting
  • Addressing - Classless
  • Addressing - Classes or Classful
  • Addressing - IPV4 vs IPV6
  • Addressing - IPv6
  • Addressing - Subnet Mask
  • Addressing - MAC Address
  • Addressing - Supernetting
  • Addressing - Private IP
  • Addressing - IPv4
  • Addressing - Public IP
  • Addressing - Multihomed
  • Addressing - Indirect Addressing
  • Addressing - ASP
  • Addressing - VLSM
  • Addressing - Routing Algorithms
  • Addressing - Hierarchical Routing
  • Addressing - Routing
  • Addressing - Distributed Routing
  • Addressing - Data Routing
  • Addressing - Services
  • Addressing - IP forwarding
  • Addressing - Aging
  • Addressing - Algorithm CR
  • Networking Media

  • Transmission - Home
  • Transmission - Modes
  • Transmission - Media
  • Transmission - System
  • Transmission - Bound
  • Transmission - Unbound
  • Transmission - Baseband
  • Transmission - Wired
  • Transmission - Fiber Benfits
  • Transmission - Infrared
  • Transmission - UnGuided
  • Transmission - Microwave
  • Transmission - Infrared
  • Transmission - Radio Wave
  • Transmission - Network
  • Transmission - Digital Signal
  • Transmission - Data
  • Transmission - Asynchronous
  • Transmission - Sync Vs Async
  • Cable - Twisted-Pair
  • Cable - Coaxial
  • Cable - UTP and STP
  • Cable - Fiber Optics
  • Cable - Gigabit Ethernet
  • Cable - Fast Ethernet
  • Cable - Ethernet Cable
  • Cable - Fiber-Optic Using
  • Cable - CATV
  • Cable - 100Base T
  • Cable - 10BASE T
  • Cable - 10 Base 2
  • Cable - 10 Base 5
  • Networking Types

  • IEEE - 802.11
  • IEEE - 802.5
  • IEEE - 802.15
  • IEEE - 802.11e
  • IEEE - 802.11n
  • Network - Ethernet
  • Network - Arpanet
  • Network - Frame Relay
  • Network - X.25
  • Network - Telephone
  • Network - WSN
  • Network - Metro Ethernet
  • Network - WAN Ethernet
  • Network - Wireless Mesh
  • Network - SAN
  • Network - SNA
  • Network - Cisco Architecture
  • Network - Vlan
  • Network - FDDI
  • Network - 100VG-Any
  • Network - EPON
  • Network - ISDN
  • Network - ARCNet
  • Network - Passive Optical
  • Networking Reference Models

  • Models - TCP/IP
  • Models - OSI
  • Models - MAC Layer
  • Models - Network Layer
  • Models - MAC Layer Functions
  • Models - TCP/IP Vs OSI
  • Models - CSMA
  • Models - CSMA/CD
  • Models - CSMA/CA
  • Models - CDMA
  • Models - STDM
  • Models - FDMA
  • Models - TDMA
  • Models - SDH
  • Models - CDM
  • Models - Multiplexing
  • Models - Reference
  • Models - Random Access Methods
  • Models - TCP/IP Architecture
  • Models - FDM
  • Models - IP Header
  • Models - OTN
  • Models - Amplitude Levels
  • Models - MIMO
  • Models - Plesiochronous Media
  • Models - Half Duplex
  • Models - ISO Architecture
  • Models - Data-Link Layer
  • Models - WDM
  • Models - Duplex
  • Models - Ethernet FDSE
  • Networking Switching Techniques

  • Switching - Home
  • Switching - Techniques
  • Switching - Packet
  • Switching - Circuit
  • Switching - Message
  • Switching - Packet Vs virtual Circuit
  • Switching - Cell
  • Switching - ATM Cell Structure
  • Switching - Virtual Circuit Vs Datagram
  • Switching - Time Space
  • Switching - Modulation
  • Switching - Cell Relay
  • Switching - ATM Structure
  • Switching - VC Vs PVC
  • Switching - Packet and Circuit
  • Switching - VPC
  • Switching - IP
  • Switching - Logical Channels
  • Switching - TDM
  • Switching - FDM
  • Network Codes

  • Codes - CRC
  • Codes - Error Correction and Detection
  • Codes - Hamming
  • Codes - Piggybacking
  • Codes - Encoding Techniques
  • Codes - Error Control
  • Codes - Parity Check
  • Codes - Parity bit
  • Codes - Bit Error
  • Codes - CRC
  • Codes - Transmission Errors
  • Codes - Error Detection and Correction
  • Network Communication

  • Communication - Home
  • Communication - Satellite
  • Communication - Wireless
  • Communication - Data Type
  • Communication - Congestion Control
  • Communication - Network
  • Communication - Data
  • Communication - Software
  • Communication - Layering Process
  • Networking Signaling

  • Signal - Analog
  • Signal - Digital
  • Signal - Analog Vs Digital
  • Signal - Digitization
  • Network Security

  • Security - Home
  • Security - Requirements
  • Security - Threats
  • Security - Services

Other Links

  • Networking - PDF Version

Footer

Basic Course

  • Computer Fundamental
  • Computer Networking
  • Operating System
  • Database System
  • Computer Graphics
  • Management System
  • Software Engineering
  • Digital Electronics
  • Electronic Commerce
  • Compiler Design
  • Troubleshooting

Programming

  • Java Programming
  • Structured Query (SQL)
  • C Programming
  • C++ Programming
  • Visual Basic
  • Data Structures
  • Struts 2
  • Java Servlet
  • C# Programming
  • Basic Terms
  • Interviews

World Wide Web

  • Internet
  • Java Script
  • HTML Language
  • Cascading Style Sheet
  • Java Server Pages
  • Wordpress
  • PHP
  • Python Tutorial
  • AngularJS
  • Troubleshooting

 About Us |  Contact Us |  FAQ

Dinesh Thakur is a Technology Columinist and founder of Computer Notes.

Copyright © 2025. All Rights Reserved.

APPLY FOR ONLINE JOB IN BIGGEST CRYPTO COMPANIES
APPLY NOW