by Dinesh Thakur Category: Computer Network

The ring architecture is a distributed architecture, with minimal connectivity and a topology of two links connected to every node as shown in Figure and forms unbroken circular configuration. Figure shows a network laid out in a physical ring, or closed loop, configuration. Transmitted messages travel from node to node around the ring. Each node must be able to recognize its own address in order to accept messages.

by Dinesh Thakur Category: Computer Network

• The SMDS is designed to connect the multiple LANs together. This is the first high speed broadband service offered to the public.

• Fig.(a) shows the interconnection of four LANs using six high speed leased lines. But this interconnection is expensive.

by Dinesh Thakur Category: Computer Network

Availability of different operating systems, hardware platforms and the geographical dispersion of the computing resources necessitated the need of networking in such a manner that computers of all sizes can communicate with each other, regardless of the vendor, the operating system, the hardware platform, or geographical proximity. Therefore, we may say that internetworking is a scheme for interconnecting multiple networks of dissimilar technologies. To interconnect multiple networks of dissimilar technologies use both additional hardware and software. This additional hardware is positioned between networks and software on each attached computer. Thus, system of interconnected networks is called an inter network or an Internet.

by Dinesh Thakur Category: Computer Network

The idea at the basis of the wavelength routing network consists of maximum reuse the same wavelengths. The figure illustrates a node of a routing network wherein wavelengths of the same wavelength are used repeatedly.

by Dinesh Thakur Category: Computer Network

The physical layer represents the first level of the hierarchy of the reference model. This level is responsible for transporting the bits on physical media varied. To access a support, use an access interface.

by Dinesh Thakur Category: Computer Network

The acronym bps stands for bits per second, which is a measurement of how fast information (data) travels between two devices. When two modems converse via the telephone line, the speed of modem communications is measured in bps. (When people talk about modems, they often use the word "baud" to mean the same thing as bps, though technically the two terms are not synonymous.

by Dinesh Thakur Category: Computer Network

Shared Ethernet Networks implementing technical standard access to physical media by the IEEE 802.3 working group under the name MAC access (Medium Access Control). MAC uses a general technique called random access.

by Dinesh Thakur Category: Computer Network

The Optical Switches are used to connect optical links between them. At incoming optical fibers correspond outgoing optical fibers. If the switch uses an electrical part, the switch is said optoelectronics and not only optical. These switches are based on the interconnection of switching elements, that is to say, switches which have two input gates and two output ports as shown in Figure. Connected in series, these elementary switches allow making great switches.  The design of these devices, however, poses many problems.

by Dinesh Thakur Category: Communication Networks

Transmission media is a pathway that carries the information from sender to receiver. We use different types of cables or waves to transmit data. Data is transmitted normally through electrical or electromagnetic signals.

by Dinesh Thakur Category: Communication Networks

Definition Data Transmission: When we enter data into the computer via keyboard, each keyed element is encoded by the electronics within the keyboard into an equivalent binary coded pattern, using one of the standard coding schemes that are used for the interchange of information. To represent all characters of the keyboard, a unique pattern of 7 or 8 bits in size is used. The use of 7 bits means that 128 different elements can be represented, while 8 bits can represent 256 elements. A similar procedure is followed at the receiver that decodes every received binary pattern into the corresponding character.

by Dinesh Thakur Category: Communication Networks

ALOHA: ALOHA is a system for coordinating and arbitrating access to a shared communication Networks channel. It was developed in the 1970s by Norman Abramson and his colleagues at the University of Hawaii. The original system used for ground based radio broadcasting, but the system has been implemented in satellite communication systems.

by Dinesh Thakur Category: Communication Networks

Data communication refers to the exchange of data between a source and a receiver via form of transmission media such as a wire cable. Data communication is said to be local if communicating devices are in the same building or a similarly restricted geographical area.

by Dinesh Thakur Category: Communication Networks

Congestion is an important issue that can arise in packet switched network. Congestion is a situation in Communication Networks in which too many packets are present in a part of the subnet, performance degrades. Congestion in a network may occur when the load on the network (i.e. the number of packets sent to the network) is greater than the capacity of the network (i.e. the number of packets a network can handle.). Network congestion occurs in case of traffic overloading.

by Dinesh Thakur Category: Communication Networks

The first layer (physical layer) of Communication Networks the OSI Seven layer model is dedicated to the transmission media. Due to the variety of transmission media and network wiring methods, selecting the most appropriate media can be confusing - what is the optimal cost-effective solution. When choosing the transmission media, what are the factors to be considered?
• Transmission Rate
• Distances
• Cost and Ease of Installation
• Resistance to Environmental Conditions

There are two types of transmission media :

• Guided
• Unguided

Guided Media :

• Unshielded Twisted Pair (UTP)
• Shielded Twisted Pair
• Coaxial Cable
• Optical Fiber

Two-wire Open Lines

The simplest transmission media is a two-wire transmission line. There are two wires insulated from each other, open to free space. This type of media is suitable for connecting equipments that are separated less than 50 meters. This media can support data rate up to a theoretical maximum of 19 Kbps. A two-wire transmission media can directly connect two computers. However, if a computer is to be connected to a communicating device like a modem, multiple communication lines are required. In this case, a number of separate insulated wires are moulded in the form of a flat ribbon with terminating connectors as shown in Figure (b).

              Terminating Connector

The limitations of this transmission media are their poor noise characteristics, failure to provide connectivity over long distances, low bit rate. This type of transmission media is often used in telephone networks.

Unshielded Twisted Pair (UTP) : UTP is the copper media, inherited from telephony, which is being used for increasingly higher data rates, and is rapidly becoming the de facto standard for horizontal wiring, the connection between, and including, the outlet and the termination in the communication closet.

Twisted Pair is a pair of copper wires, with diameters of 0.4-0.8 mm, twisted together and wrapped with a plastic coating. The twisting increases the electrical noise immunity, and reduces the bit error rate (BER) of the data transmission. A UTP cable contains from 2 to 4200 twisted pairs.

UTP is a very flexible, low cost media, and can be used for either voice or data communications. Its greatest disadvantage is the limited bandwidth, which restricts long distance transmission with low error rates.

Shielded Twisted Pair (STP) : STP is heavier and more difficult to manufacture, but it can greatly improve the signaling rate in a given transmission scheme Twisting provides cancellation of magnetically induced fields and currents on a pair of conductors. 

Magnetic fields arise around other heavy current-carrying conductors and around large electric motors. Various grades of copper cables are available, with Grade 5 being the best and most expensive.

Grade 5 copper, appropriate for use in 100-Mbps applications, has more twists per inch than lower grades. More twists per inch means more linear feet of copper wire used to make up a cable run, and more copper means more money.

Shielding provides a means to reflect or absorb electric fields that are present around cables. Shielding comes in a variety of forms from copperbraiding or copper meshes to aluminized.

Mylar tape wrapped around each conductor and again around the twisted pair.

Coaxial Cable: Coaxial cable is a two-conductor cable in which one conductor forms an electromagnetic shield around the other. The two conductors are separated by insulation. It is a constant impedance transmission cable. This media is used in base band and broadband transmission. Coaxial cables do not produce external electric and magnetic fields and are not affected by them. This makes them ideally suited, although more expensive, for transmitting signals. 

Optical Fiber : Optical fiber consists of thin glass fibers that can carry information at frequencies in the visible light spectrum and beyond. The typical optical fiber consists of a very narrow strand of glass called the core. Around the core is a concentric layer of glass called the cladding. 

A typical core diameter is 62.5 microns .Typically cladding has a diameter of 125 microns. Coating the cladding is a protective coating consisting of plastic, it is called the Jacket. An important characteristic of fiber optics is refraction. Refraction is the characteristic of a material to either pass or reflect light. When light passes through a medium, it “bends” as it passes from one medium to the other. An example of this is when we look into a pond of water If the angle of incidence is small, the light rays are reflected and do not pass into the water.

If the angle of incident is great, light passes through the media but is bent or refracted. Optical fibers work on the principle that the core refracts the light and the cladding reflects the light. The core refracts the light and guides the light along its path. The cladding reflects any light back into the core and stops light from escaping through it - it bounds the medium!

Unguided Media : Transmission media then looking at analysis of using them unguided transmission media is data signals that flow through the air. They are not guided or bound to a channel to follow. Following are unguided media used for data communication.

• Radio Transmission
• Microwave
• Satellite Communication

• RF Propagation: There are three types of RF (radio frequency) propagation :

• Ground Wave
• Ionospheric
• Line of Sight (LOS)

Ground wave propagation follows the curvature of the Earth. Ground waves have carrier frequencies up to 2 MHz. AM radio is an example of ground wave propagation. Ionospheric propagation bounces off of the Earth’s ionospheric layer in the upper atmosphere.

It is sometimes called double hop propagation. It operates in the frequency range of 30 - 85 MHz. Because it depends on the Earth’s ionosphere, it changes with the weather and time of day. The signal bounces off of the ionosphere and back to earth. Ham radios operate in this range.

Line of sight propagation transmits exactly in the line of sight. The receive station must be in the view of the transmit station. It is sometimes called space waves or tropospheric propagation. It is limited by the curvature of the Earth for ground-based stations (100 km, from horizon to horizon). Reflected waves can cause problems. Examples of line of sight propagation are: FM radio, microwave and satellite.

Radio Frequencies : The frequency spectrum operates from 0 Hz (DC) to gamma rays (1019 Hz). Radio frequencies are in the range of 300 kHz to 10 GHz. We are seeing an emerging technology called wireless LANs. Some use radio frequencies to connect the workstations together, some use infrared technology. 

Microwave : Microwave transmission is line of sight transmission. The transmit station must be in visible contact with the receive station. This sets a limit on the distance between stations depending on the local geography. Typically the line of sight due to the Earth’s curvature is only 50 km to the horizon! Repeater stations must be placed so the data signal can hop, skip and jump across the country.

Microwaves operate at high operating frequencies of 3 to 10 GHz. This allows them to carry large quantities of data due to their large bandwidth.

Advantages :

(a) They require no right of way acquisition between towers.

(b) They can carry high quantities of information due to their high operating frequencies.

(c) Low cost land purchase: each tower occupies only a small area.

(d) High frequency/short wavelength signals require small antennae.

Disadvantages :

(a) Attenuation by solid objects: birds, rain, snow and fog.

(b) Reflected from flat surfaces like water and metal.

(c) Diffracted (split) around solid objects.

(d) Reflected by atmosphere, thus causing beam to be projected away from receiver.

Satellite : Satellites are transponders (units that receive on one frequency and retransmit on another) that are set in geostationary orbits directly over the equator. These geostationary orbits are 36,000 km from the Earth’s surface. At this point, the gravitational pull of the Earth and the centrifugal force of Earth’s rotation are balanced and cancel each other out. Centrifugal force is the rotational f0rce placed on the satellite that wants to fling it out into space.

The uplink is the transmitter of data to the satellite. The downlink is the receiver of data. Uplinks and downlinks are also called Earth stations because they are located on the Earth. The footprint is the “shadow” that the satellite can transmit to, the shadow being the area that can receive the satellite’s transmitted signal.

by Dinesh Thakur Category: Communication Networks

The term Transmission Mode defines the direction of the flow of information between two communication devices i.e. it tells the direction of signal flow between the two devices.

There are three ways or modes of data transmission: Simplex, Half duplex (HDX), Full duplex (FDX)

by Dinesh Thakur Category: Communication Networks

Firstly we understand the concept of what is broadband connection in communication networks. Broadband is a high-capacity high-speed Data transmission medium. This can be done on a single cable by establishing different bandwidth channels. Broadband technology can be used to transmit voice, data and video over long distances simultaneously.

by Dinesh Thakur Category: Communication Networks

Error detection and correction has great practical importance in maintaining data (information) integrity across noisy Communication Networks channels and lessthan- reliable storage media.

by Dinesh Thakur Category: Communication Networks

Cyclic Redundancy Check (CRC) An error detection mechanism in which a special number is appended to a block of data in order to detect any changes introduced during storage (or transmission). The CRe is recalculated on retrieval (or reception) and compared to the value originally transmitted, which can reveal certain types of error. For example, a single corrupted bit in the data results in a one-bit change in the calculated CRC, but multiple corrupt bits may cancel each other out.

by Dinesh Thakur Category: Communication Networks

• In sliding window method, multiple frames are sent by sender at a time before needing an acknowledgment.

• Multiple frames sent by source are acknowledged by receiver using a single ACK frame.

by Dinesh Thakur Category: Communication Networks

The Media Access Control (MAC) data communication Networks protocol sub-layer, also known as the Medium Access Control, is a sub-layer of the data link layer specified in the seven-layer OSI model. The medium access layer was made necessary by systems that share a common communications medium. Typically these are local area networks. The MAC layer is the "low" part of the second OSI layer, the layer of the "data link". In fact, the IEEE divided this layer into two layers "above" is the control layer the logical connection (Logical Link Control, LLC) and "down" the control layer The medium access (MAC).


Page 3 of 18

About Dinesh Thakur

Dinesh ThakurDinesh Thakur holds an B.SC (Computer Science), MCSE, MCDBA, CCNA, CCNP, A+, SCJP certifications. Dinesh authors the hugely popular blog. Where he writes how-to guides around Computer fundamental , computer software, Computer programming, and web apps. For any type of query or something that you think is missing, please feel free to Contact us.